Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 128P
To determine
Temperature, pressure and Mach number at a location, where the flow area has area has been reduced by
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air at 14 psia, 40°F, and a Mach number of 2.0 is forced to turn upward by a ramp that makes an 8° angle off the flow direction. As a result, a weak oblique shock forms. Determine the wave angle, Mach number, pressure, and temperature after the shock.
Air flowing at 8 psia, 480 R, and Ma1 = 2.0 is forced to undergo a compression turn of 15°. Determine the Mach number, pressure, and temperature of the air after the compression.
Ahead of the normal shock wave, the upstream pressure , temperature, and Mach number are 0.53 atm, 255 K, and 2.8, respectively. Determine the pressure downstream of the shock wave.
Chapter 12 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 12 - What is dynamic temperature?Ch. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Calculate the stagnation temperature and pressure...Ch. 12 - Prob. 7PCh. 12 - Prob. 8EPCh. 12 - Prob. 9PCh. 12 - Products of combustion enter a gas turbine with a...Ch. 12 - Is it possible to accelerate a gas to a supersonic...Ch. 12 - Prob. 18P
Ch. 12 - Prob. 28PCh. 12 - Prob. 39PCh. 12 - Prob. 41EPCh. 12 - Prob. 64PCh. 12 - Air enters a converging—diverging nozzle with low...Ch. 12 - Prob. 75EPCh. 12 - Prob. 76EPCh. 12 - Prob. 78PCh. 12 - Prob. 79PCh. 12 - Prob. 80CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 83CPCh. 12 - Prob. 84CPCh. 12 - Prob. 85CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 87PCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90EPCh. 12 - Prob. 92EPCh. 12 - Prob. 93PCh. 12 - Prob. 94PCh. 12 - Prob. 95PCh. 12 - Prob. 96PCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101CPCh. 12 - Prob. 102CPCh. 12 - Prob. 103CPCh. 12 - Prob. 104CPCh. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Air enters a 15-m-long, 4-cm-diameter adiabatic...Ch. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 15-cm-diameter adiabatic duct with...Ch. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 115PCh. 12 - Prob. 116PCh. 12 - Prob. 117PCh. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 124PCh. 12 - Prob. 125PCh. 12 - Prob. 126PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 132PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Prob. 139PCh. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 143PCh. 12 - Prob. 144PCh. 12 - Prob. 145PCh. 12 - Prob. 146PCh. 12 - Prob. 147PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 149PCh. 12 - Prob. 152PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Prob. 163PCh. 12 - Prob. 164PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- How does the Mach number affect the behavior of compressible flow in a supersonic nozzle?arrow_forwardAir flowing at 32 kPa, 240 K, and Ma1 = 3.6 is forced to undergo an expansion turn of 15°. Determine the Mach number, pressure, and temperature of air after the expansion.arrow_forwardAn ideal gas with k = 1.4 is flowing through a nozzle such that the Mach number is 1.6 where the flow area is 45 cm2. Approximating the flow as isentropic, determine the flow area at the location where the Mach number is 0.8.arrow_forward
- Consider a gas with a specific heats ratio of 1.48 at the Mach number of 6.5. Determine the strength (the pressure ratio across the shock, p2/p1) of the normal shock.arrow_forwardAir flowing steadily in a nozzle experiences a normal shock at a Mach number of Ma = 2.5. If the pressure and temperature of air are 10.0 psia and 440.5 R, respectively, upstream of the shock, calculate the pressure, temperature, velocity, Mach number, and stagnation pressure downstream of the shock. Compare these results to those for helium undergoing a normal shock under the same conditions.arrow_forwardAir at 26 psia, 320°F, and Mach number Ma = 0.7 flows through a duct. Calculate the velocity and the stagnation pressure, temperat and density of air. The properties of air are R = 0.06855 Btu/lbm-R = 0.3704 psia-ft3/lbm-R and k=1.4. The velocity of air is ft/s. The stagnation temperature of air is The stagnation pressure of air is The stagnation density of air is R. psia. | lbm/ft³.arrow_forward
- Consider subsonic Fanno flow of air with an inlet Mach number of 0.70. If the Mach number increases to 0.90 at the duct exit as a result of friction, will the (a) stagnation temperature T0, (b) stagnation pressure P0, and (c) entropy s of the fluid increase, decrease, or remain constant during this process?arrow_forwardAir at a total pressure and temperature of 8 atm and 450 K enters a frictionless constant cross-section duct. A heat addition of 850 kJ/kg makes the flow to choke at the duct exit, determine the inlet Mach number and the total pressure and total temperature at the exit.arrow_forwardNitrogen enters a converging–diverging nozzle at 620 kPa and 310 K with a negligible velocity, and it experiences a normal shock at a location where the Mach number is Ma = 3.0. Calculate the pressure, temperature, velocity, Mach number, and stagnation pressure downstream of the shock. Compare these results to those of air undergoing a normal shock at the same conditions.arrow_forward
- Air flowing steadily in a nozzle experiences a normal shock at a Mach number of Ma = 2.6. If the pressure and temperature of air are 58 kPa and 270 K, respectively, upstream of the shock, calculate the pressure, temperature velocity, Mach number, and stagnation pressure downstream of the shock. Calculate the entropy changes of air and helium across the normal shock wavearrow_forwardAir flowing steadily in a nozzle experiences a normal shock at a Mach number of Ma = 2.6. If the pressure and temperature of air are 58 kPa and 270 K, respectively, upstream of the shock, calculate the pressure, temperature, velocity, Mach number, and stagnation pressure downstream of the shock. Compare these results to those for helium undergoing a normal shock under the same conditions.arrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License