Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 105P
Air enters a 12-cm-diameter adiabatic duct at
FIFURE P12-104
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air enters a 12-m-long, 5-cm-diameter adiabatic duct at V1 = 70 m/s, T1 = 500 K, and P1 = 300 kPa. The average friction factor for the duct is estimated to be 0.023. Determine the Mach number at the duct exit, the exit velocity, and the mass flow rate of air.
Air enters a 5.5-cm-diameter adiabatic duct with inlet conditions of Ma1 = 2.2, T1 = 250 K, and P1 = 60 kPa, and exits at a Mach number of Ma2 = 1.8. Taking the average friction factor to be 0.03, determine the velocity, temperature, and pressure at the exit.
Q4-Air enters a 12-cm-diameter adiabatic duct at MI-0.4, TI=550 K, and Pl= 200 kPa.
The average friction factor for the duct is estimated to be 0.021. If the Mach number at
the duct exit is 0.8, determine the duct length, temperature, pressure, and velocity at the
duct exit.
Chapter 12 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 12 - What is dynamic temperature?Ch. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Calculate the stagnation temperature and pressure...Ch. 12 - Prob. 7PCh. 12 - Prob. 8EPCh. 12 - Prob. 9PCh. 12 - Products of combustion enter a gas turbine with a...Ch. 12 - Is it possible to accelerate a gas to a supersonic...Ch. 12 - Prob. 18P
Ch. 12 - Prob. 28PCh. 12 - Prob. 39PCh. 12 - Prob. 41EPCh. 12 - Prob. 64PCh. 12 - Air enters a converging—diverging nozzle with low...Ch. 12 - Prob. 75EPCh. 12 - Prob. 76EPCh. 12 - Prob. 78PCh. 12 - Prob. 79PCh. 12 - Prob. 80CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 83CPCh. 12 - Prob. 84CPCh. 12 - Prob. 85CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 87PCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90EPCh. 12 - Prob. 92EPCh. 12 - Prob. 93PCh. 12 - Prob. 94PCh. 12 - Prob. 95PCh. 12 - Prob. 96PCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101CPCh. 12 - Prob. 102CPCh. 12 - Prob. 103CPCh. 12 - Prob. 104CPCh. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Air enters a 15-m-long, 4-cm-diameter adiabatic...Ch. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 15-cm-diameter adiabatic duct with...Ch. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 115PCh. 12 - Prob. 116PCh. 12 - Prob. 117PCh. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 124PCh. 12 - Prob. 125PCh. 12 - Prob. 126PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 132PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Prob. 139PCh. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 143PCh. 12 - Prob. 144PCh. 12 - Prob. 145PCh. 12 - Prob. 146PCh. 12 - Prob. 147PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 149PCh. 12 - Prob. 152PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Prob. 163PCh. 12 - Prob. 164PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air is flowing in a wind tunnel at 12°C and 66 kPa at a velocity of 190 m/s. The Mach number of the flow is (a) 0.56 m/s (b) 0.65 m/s (c) 0.73 m/s (d ) 0.87 m/s (e) 1.7 m/sarrow_forwardHow does the parameter Ma* differ from the Mach number Ma?arrow_forwardAir at 26 psia, 320°F, and Mach number Ma = 0.7 flows through a duct. Calculate the velocity and the stagnation pressure, temperat and density of air. The properties of air are R = 0.06855 Btu/lbm-R = 0.3704 psia-ft3/lbm-R and k=1.4. The velocity of air is ft/s. The stagnation temperature of air is The stagnation pressure of air is The stagnation density of air is R. psia. | lbm/ft³.arrow_forward
- Air is cooled as it flows through a 30-cm-diameter duct. The inlet conditions are Ma1 = 1.2, T01 = 350 K, and P01 = 240 kPa and the exit Mach number is Ma2 = 2.0. Disregarding frictional effects, determine the rate of cooling of air.arrow_forwardI need the answer as soon as possiblearrow_forwardHow is the Mach number of a flow defined? What does a Mach number of 2 indicate?arrow_forward
- When an airplane is flying at a constant speed relative to the ground, is it correct to say that the Mach number of this airplane is also constant?arrow_forwardGas dynamics Dr. Sajida Lafta Q5- Air enters a 15 m long. 4 cm diameter adiabatic duct at V=70 m's, T=500 K, and P=300 kPa. The average friction factor for the duct is estimated to be 0.023. Determine the Mach number at the duct exit, the exit velocity, and the mass flow rate of air.arrow_forwardHow does the Mach number affect the behavior of compressible flow in a supersonic nozzle?arrow_forward
- Air at 25 psia, 320°F, and Mach number Ma = 0.7 flows through a duct. Calculate the velocity and the stag nation pressure, temperature, and density of air.arrow_forwardCombustion gases with an average specific heat ratio of k=1.33 and a gas constant of R=0.280 kJ/kgK enter a 10-cm-diameter adiabatic duct with inlet conditions of Ma1=2,62 T1=562 K, and P1 =186,2 kPa. If a normal shock occurs at a location 2062 mm from the inlet, determine the velocity, temperature, and pressure at the duct exit. Take the average friction factor of the duct to be 0.01062. Calculate the static stagnation pressure, temperature and density values of the flow at the duct outlet. Solve the problem by making the necessary assumptions and drawing the schematic figure.arrow_forwardAir flows with negligible friction through a 6-in-diameter duct at a rate of 9 lbm/s. The temperature and pressure at the inlet are T1 = 800 R and P1 = 30 psia, and the Mach number at the exit is Ma2 = 1. Determine the rate of heat transfer and the pressure drop for this section of the duct.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License