![Chemistry: Principles and Practice](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The mole fraction of heptane and hexane in liquid phase has to be given.
Concept Introduction:
Mole fraction: Mole fraction of a substance in a solution is the number of moles of that substance divided by the total number of moles of all substances present. The formula is,
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 12.85QE
The mole fraction of hexane is
The mole fraction of heptane is
Explanation of Solution
Given,
Weight of hexane =
Weight of heptane =
Vapor pressure of hexane =
Vapor pressure of heptane =
The moles of heptane and hexane are calculated from their molar masses respectively.
Moles of hexane=
Moles of heptane=
The mole fraction of hexane in the liquid phase is calculated as,
Mole fraction of hexane=
Mole fraction of hexane=
Mole fraction of hexane=
The mole fraction of heptane is calculated from the mole fraction of hexane.
Mole fraction of heptane=
Mole fraction of heptane=
The mole fraction of hexane is
The mole fraction of heptane is
(b)
Interpretation:
The vapor pressures of hexane and heptane above the solution have to be given.
Concept Introduction:
The equilibrium between a liquid and its vapor produces a characteristic vapor pressure for each substance that depends on the temperature. The lowering of the vapor pressure is caused by a lesser ability of the solvent to evaporate, so equilibrium is reached with a smaller concentration of the solvent in the gas phase. The vapor pressure of a solution is expressed using Raoult’s law:
The vapor pressure of the solvent
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 12.85QE
The vapor pressure of hexane is
The vapor pressure of heptane is
Explanation of Solution
Given,
Weight of hexane =
Weight of heptane =
Vapor pressure of hexane =
Vapor pressure of heptane =
The moles of hexane are calculated from its molar mass.
Moles of hexane=
The mole fraction of hexane in the liquid phase is calculated as,
Mole fraction of hexane=
Mole fraction of hexane=
Mole fraction of hexane=
The vapor pressure of hexane is given as,
Vapor pressure of hexane=
Vapor pressure of hexane=
Vapor pressure of hexane=
The moles of heptane are calculated from its molar mass.
Moles of heptane=
The mole fraction of heptane is calculated from the mole fraction of hexane.
Mole fraction of heptane=
Mole fraction of heptane=
The vapor pressure of heptane is given as,
Vapor pressure of heptane=
Vapor pressure of heptane=
Vapor pressure of heptane=
The vapor pressure of hexane is
The vapor pressure of heptane is
(c)
Interpretation:
The mole fraction of heptane and hexane in vapor phase has to be given.
Concept Introduction:
Refer to part (a) and (b).
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 12.85QE
The mole fraction of hexane in vapor pressure is
The mole fraction of heptane in vapor pressure is
Explanation of Solution
The vapor pressure of hexane
The vapor pressure of heptane is
The total vapor pressure is
The mole fraction of hexane and hexane are calculated as,
Mole fraction=
Mole fraction of hexane=
Mole fraction of heptane=
The mole fraction of hexane in vapor pressure is
The mole fraction of heptane in vapor pressure is
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry: Principles and Practice
- we were assigned to dilute 900ppm in to 18ppm by using only 250ml vol flask. firstly we did calc and convert 900ppm to 0.9 ppm to dilute in 1 liter. to begin the experiment we took 0,225g of kmno4 and dissolved in to 250 vol flask. then further we took 10 ml sample sol and dissolved in to 100 ml vol flask and put it in to a spectrometer and got value of 0.145A . upon further calc we got v2 as 50ml . need to find DF, % error (expval and accptVal), molarity, molality. please write the whole report. thank you The format, tables, introduction, procedure and observation, result, calculations, discussion and conclusionarrow_forwardQ5. Predict the organic product(s) for the following transformations. If no reaction will take place (or the reaction is not synthetically useful), write "N.R.". Determine what type of transition state is present for each reaction (think Hammond Postulate). I Br₂ CH3 F2, light CH3 Heat CH3 F₂ Heat Br2, light 12, light CH3 Cl2, light Noarrow_forwardNonearrow_forward
- In the phase diagram of steel (two components Fe and C), region A is the gamma austenite solid and region B contains the gamma solid and liquid. Indicate the degrees of freedom that the fields A and B have,arrow_forwardFor a condensed binary system in equilibrium at constant pressure, indicate the maximum number of phases that can exist.arrow_forwardPart V. Label ad match the carbons in compounds Jane and Diane w/ the corresponding peak no. in the Spectra (Note: use the given peak no. To label the carbons, other peak no are intentionally omitted) 7 4 2 -0.13 -0.12 -0.11 -0.10 -0.08 8 CI Jane 1 -0.09 5 210 200 190 180 170 160 150 140 130 120 110 100 -8 90 f1 (ppm) 11 8 172.4 172.0 f1 (ppr HO CI NH Diane 7 3 11 80 80 -80 -R 70 60 60 2 5 -8 50 40 8. 170 160 150 140 130 120 110 100 90 -0 80 70 20 f1 (ppm) 15 30 -20 20 -60 60 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 -0.00 -0.01 10 -0.17 16 15 56 16 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 17.8 17.6 17.4 17.2 17.0 f1 (ppm) -0.03 -0.02 550 106 40 30 20 20 -0.01 -0.00 F-0.01 10 0arrow_forward
- n Feb 3 A T + 4. (2 pts) Draw the structure of the major component of the Limonene isolated. Explain how you confirmed the structure. 5. (2 pts) Draw the fragment corresponding to the base peak in the Mass spectrum of Limonene. 6. (1 pts) Predict the 1H NMR spectral data of R-Limonene. Proton NMR: 5.3 pon multiplet (H Ringarrow_forwardPart VI. Ca H 10 O is the molecular formula of compound Tom and gives the in the table below. Give a possible structure for compound Tom. 13C Signals summarized C1 C2 C3 C4 C5 C6 C7 13C shift (ppm) 23.5 27.0 33.0 35.8 127 162 205 DEPT-90 + DEPT-135 + +arrow_forward2. Using the following data to calculate the value of AvapH o of water at 298K. AvapH o of water at 373K is 40.7 kJ/mol; molar heat capacity of liquid water at constant pressure is 75.2J mol-1 K-1 and molar heat capacity of water vapor at constant pressure is 33.6 J mol-1 K-1.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)