Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 12.98QE
(a)
Interpretation Introduction
Interpretation:
The molality of hydrochloric acid in benzene solution has to be calculated.
Concept Introduction:
Freezing point depression: The freezing point depression is proportional to the concentration of the solute particles and is given by the equation,
Here,
(b)
Interpretation Introduction
Interpretation:
The molality of hydrochloric acid in water solution has to be calculated.
Concept Introduction:
Refer to part (a).
(c)
Interpretation Introduction
Interpretation:
The difference in values found in the molality of hydrochloric acid in benzene solution and water solution has to be explained.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Chemistry: Principles and Practice
Ch. 12 - Prob. 12.1QECh. 12 - Prob. 12.2QECh. 12 - Prob. 12.3QECh. 12 - Prob. 12.4QECh. 12 - Prob. 12.5QECh. 12 - Prob. 12.6QECh. 12 - Prob. 12.7QECh. 12 - Prob. 12.8QECh. 12 - Prob. 12.9QECh. 12 - Prob. 12.10QE
Ch. 12 - Prob. 12.11QECh. 12 - Prob. 12.12QECh. 12 - Create a flow diagram, similar to those used in...Ch. 12 - Prob. 12.14QECh. 12 - Prob. 12.15QECh. 12 - Prob. 12.16QECh. 12 - Prob. 12.17QECh. 12 - Prob. 12.18QECh. 12 - Prob. 12.19QECh. 12 - Prob. 12.20QECh. 12 - Prob. 12.21QECh. 12 - Prob. 12.22QECh. 12 - Prob. 12.23QECh. 12 - Prob. 12.24QECh. 12 - Prob. 12.25QECh. 12 - Prob. 12.26QECh. 12 - Prob. 12.27QECh. 12 - What is the molality of copper(II) bromide (CuBr2)...Ch. 12 - Prob. 12.29QECh. 12 - Prob. 12.30QECh. 12 - A water solution of sodium hypochlorite (NaOCl) is...Ch. 12 - Prob. 12.32QECh. 12 - Prob. 12.33QECh. 12 - Vinegar is a 5.0% solution of acetic acid...Ch. 12 - Prob. 12.35QECh. 12 - A 2.77 M NaOH solution in water has a density of...Ch. 12 - The density of a 3.75 M aqueous sulfuric acid...Ch. 12 - Prob. 12.40QECh. 12 - Prob. 12.41QECh. 12 - Prob. 12.42QECh. 12 - Predict the relative solubility of each compound...Ch. 12 - Predict the relative solubility of each compound...Ch. 12 - Prob. 12.45QECh. 12 - Prob. 12.46QECh. 12 - Prob. 12.47QECh. 12 - Prob. 12.48QECh. 12 - Prob. 12.49QECh. 12 - The solubility of ethylene (C2H4) in water at 20 C...Ch. 12 - Prob. 12.51QECh. 12 - Prob. 12.52QECh. 12 - Prob. 12.53QECh. 12 - Prob. 12.54QECh. 12 - Prob. 12.55QECh. 12 - Prob. 12.56QECh. 12 - From the data presented in Figure 12.11, determine...Ch. 12 - Prob. 12.58QECh. 12 - Prob. 12.59QECh. 12 - Prob. 12.60QECh. 12 - Prob. 12.61QECh. 12 - Prob. 12.62QECh. 12 - The vapor pressure of chloroform (CHCl3) is 360...Ch. 12 - Prob. 12.64QECh. 12 - Prob. 12.65QECh. 12 - Prob. 12.66QECh. 12 - Prob. 12.67QECh. 12 - Prob. 12.68QECh. 12 - Prob. 12.69QECh. 12 - Prob. 12.70QECh. 12 - A solution of 1.00 g of a protein in 20.0 mL water...Ch. 12 - Prob. 12.72QECh. 12 - Arrange the following aqueous solutions in order...Ch. 12 - Arrange the following solutions in order of...Ch. 12 - Prob. 12.75QECh. 12 - An aqueous solution of sodium bromide freezes at...Ch. 12 - Prob. 12.77QECh. 12 - Prob. 12.78QECh. 12 - Prob. 12.79QECh. 12 - Prob. 12.80QECh. 12 - A 0.029 M solution of potassium sulfate has an...Ch. 12 - The freezing point of a 0.031-m solution of...Ch. 12 - Prob. 12.83QECh. 12 - Prob. 12.84QECh. 12 - Prob. 12.85QECh. 12 - Prob. 12.86QECh. 12 - Prob. 12.87QECh. 12 - Prob. 12.88QECh. 12 - Prob. 12.89QECh. 12 - Prob. 12.90QECh. 12 - Predict the relative solubility of each compound...Ch. 12 - Prob. 12.92QECh. 12 - Prob. 12.94QECh. 12 - Prob. 12.95QECh. 12 - Prob. 12.96QECh. 12 - Sketch graphs of total vapor pressure versus the...Ch. 12 - Prob. 12.98QECh. 12 - Prob. 12.99QECh. 12 - Prob. 12.100QECh. 12 - Prob. 12.101QECh. 12 - Prob. 12.102QECh. 12 - Prob. 12.103QECh. 12 - A 10.00-mL sample of a 24.00% solution of ammonium...Ch. 12 - Prob. 12.105QECh. 12 - In the 1986 Lake Nyos disaster (see the chapter...Ch. 12 - Prob. 12.107QE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Calcium chloride, CaCl2, has been used to melt ice from roadways. Given that the saturated solution is 32% CaCl2 by mass, estimate the freezing point.arrow_forwardCalculate the molality of a solution made by dissolving 115.0 g ethylene glycol, HOCH2CH2OH, in 500. mL water. The density of water at this temperature is 0.978 g/mL. Calculate the molarity of the solution.arrow_forwardThe vapor pressures of several solutions of water-propanol (CH3CH2CH2OH) were determined at various compositions, with the following data collected at 45C: H2O Vapor pressure(torr) 0 74.0 0.15 77.3 0.37 80.2 0.54 81.6 0.69 80.6 0.83 78.2 1.00 71.9 a. Are solutions of water and propanol ideal? Explain. b. Predict the sign of Hsoln for water-propanol solutions. c. Are the interactive forces between propanol and water molecules weaker than, stronger than, or equal to the interactive forces between the pure substances? Explain. d. Which of the solutions in the data would have the lowest normal boiling point?arrow_forward
- A solution is made by dissolving 34.0 g of NaCl in 100 g of H2O at 0C. Based on the data in Table 8-1, should this solution be characterized as a. saturated or unsaturated b. dilute or concentratedarrow_forwardA forensic chemist is given a white solid that is suspected of being pure cocaine (C17H21NO4, molar mass = 303.35 g/mol). She dissolves 1.22 0.01 g of the solid in 15.60 0.01 g benzene. The freezing point is lowered by 1.32 0.04C. a. What is the molar mass of the substance? Assuming that the percent uncertainty in the calculated molar mass is the same as the percent uncertainty in the temperature change, calculate the uncertainty in the molar mass. b. Could the chemist unequivocally state that the substance is cocaine? For example, is the uncertainty small enough to distinguish cocaine from codeine (C18H21NO3, molar mass = 299.36 g/mol)? c. Assuming that the absolute uncertainties in the measurements of temperature and mass remain unchanged, how could the chemist improve the precision of her results?arrow_forwardFreezing point depression is one means of determining the molar mass of a compound. The freezing point depression constant of benzene is 5.12 C/m. a. When a 0.503 g sample of the white crystalline dimer is dissolved in 10.0 g benzene, the freezing point of benzene is decreased by 0542 C. Verify that the molar mass of the dimer is 475 g/mol when determined by freezing point depression. Assume no dissociation of the dimer occurs. b. The correct molar mass of the dimer is 487 g/mol. Explain why the dissociation equilibrium causes the freezing point depression calculation to yield a lower molar mass for the dimer.arrow_forward
- The dispersed phase of a certain colloidal dispersion consists of spheres of diameter 1.0 102 nm. (a) What are the volume (V=43r2) and surface area (A = r2) of each sphere? (b) How many spheres are required to give a total volume of 1.0 cm3? What is the total surface area of these spheres in square meters?arrow_forwardRefer to Figure 13.10 ( Sec. 13-4b) to answer these questions. (a) Does a saturated solution occur when 65.0 g LiCl is present in 100 g H2O at 40 C? Explain your answer. (b) Consider a solution that contains 95.0 g LiCl in 100 g H2O at 40 C. Is the solution unsaturated, saturated, or supersaturated? Explain your answer. (c) Consider a solution that contains 50. g Li2SO4 in 200. g H2O at 50 C. Is this solution unsaturated, saturated, or supersaturated? Explain your answer. Figure 13.10 Solubility of ionic compounds versus temperature.arrow_forwardTemperature influences solubility. Does temperature have the same effect on all substances? Justify your answer. (Hint: Consider Le Chateliers principle.)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY