Chemistry: Principles and Practice
Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 12, Problem 12.84QE

(a)

Interpretation Introduction

Interpretation:

The mole fraction of 2-methylpentane and cyclohexane in liquid phase has to be given.

Concept Introduction:

Mole fraction:  Mole fraction of a substance in a solution is the number of moles of that substance divided by the total number of moles of all substances present.  The formula is,

  χA=MolesofA (inmol)MolesofA (in mol) +MolesofB (in mol) +MolesofC (in mol) +...χA=MolesofA (inmol)Totalnumberofmolesofcomponents(inmol)

(a)

Expert Solution
Check Mark

Answer to Problem 12.84QE

The mole fraction of cyclohexane is 0.367801.

The mole fraction of 2-methylpentane is 0.632199.

Explanation of Solution

Given,

Weight of cyclohexane        =25.0g

Weight of 2-methylpentane        =44g

Vapor pressure of cyclohexane    =150torr

Vapor pressure of 2-methylpentane    =313 torr

The moles of 2-methylpentane and cyclohexane are calculated from their molar masses.

  Moles of cyclohexane=25g×1mol84.16g=0.2970mole

  Moles of 2-methylpentane=44g×1mol86.18g=0.5105mole

The mole fraction of cyclohexane in the liquid phase is calculated as,

  Mole fraction of cyclohexane=0.2970mole0.2970mole+0.5105mole

  Mole fraction of cyclohexane=0.2970mole0.8075mole

  Mole fraction of cyclohexane=0.367801

The mole fraction of 2-methylpentane is calculated from the mole fraction of cyclohexane.

  Mole fraction of 2-methylpentane=1-0.367801

  Mole fraction of 2-methylpentane=0.632199

The mole fraction of cyclohexane is 0.367801.

The mole fraction of 2-methylpentane is 0.632199.

(b)

Interpretation Introduction

Interpretation:

The vapor pressures of cyclohexane and 2-methylpentane above the solution have to be given.

Concept Introduction:

The equilibrium between a liquid and its vapor produces a characteristic vapor pressure for each substance that depends on the temperature.  The lowering of the vapor pressure is caused by a lesser ability of the solvent to evaporate, so equilibrium is reached with a smaller concentration of the solvent in the gas phase.  The vapor pressure of a solution is expressed using Raoult’s law:

  PsolvsolvPosolv

The vapor pressure of the solvent (Psolv) above a dilute solution is equal to the mole fraction of the solvent solv) times the vapor pressure of the pure solvent (Posolv).

(b)

Expert Solution
Check Mark

Answer to Problem 12.84QE

The vapor pressure of cyclohexane is 55.17 torr.

The vapor pressure of 2-methylpentane is 197.87torr.

Explanation of Solution

Given,

Weight of cyclohexane        =25.0g

Weight of 2-methylpentane        =44g

Vapor pressure of cyclohexane    =150torr

Vapor pressure of 2-methylpentane    =313 torr

The moles of cyclohexane are calculated from its molar mass.

  Moles of cyclohexane=25g×1mol84.16g=0.2970mole

The mole fraction of cyclohexane in the liquid phase is calculated as,

  Mole fraction of cyclohexane=0.2970mole0.2970mole+0.5105mole

  Mole fraction of cyclohexane=0.2970mole0.8075mole

  Mole fraction of cyclohexane=0.367801

The vapor pressure of cyclohexane is given as,

  Vapor pressure of cyclohexane=χcyclohexanePocyclohexane

  Vapor pressure of cyclohexane=0.367801×150torr

  Vapor pressure of cyclohexane=55.17torr

The moles of 2-methylpentane are calculated from its molar mass.

  Moles of 2-methylpentane=44g×1mol86.18g=0.5105mole

The mole fraction of 2-methylpentane is calculated from the mole fraction of cyclohexane.

  Mole fraction of 2-methylpentane=1-0.367801

  Mole fraction of 2-methylpentane=0.632199

The vapor pressure of 2-methylpentane is given as,

  Vapor pressure of 2-methylpentane=χ2-methylpentanePo2-methylpentane

  Vapor pressure of 2-methylpentane=0.632199×313torr

  Vapor pressure of 2-methylpentane=197.87 torr

The vapor pressure of cyclohexane is 55.17 torr.

The vapor pressure of 2-methylpentane is 197.87torr.

(c)

Interpretation Introduction

Interpretation:

The mole fraction of 2-methylpentane and cyclohexane in vapor phase has to be given.

Concept Introduction:

Refer to part (a) and (b).

(c)

Expert Solution
Check Mark

Answer to Problem 12.84QE

The mole fraction of cyclohexane in vapor phase is 0.2180.

The mole fraction of 2-methylpentane in vapor phase is 0.7819.

Explanation of Solution

The vapor pressure of cyclohexane is 55.17 torr.

The vapor pressure of 2-methylpentane is 197.87torr.

The total vapor pressure is 253.04 torr.

The mole fraction of cyclohexane and 2-methylpentane are calculated as,

  Mole fraction=Vaporpressureofcyclohexane/2-methylpentane(intorr)Totalvaporpressure(intorr)

  Mole fraction of cyclohexane=55.17torr253.04torr=0.2180

  Mole fraction of 2-methylpentane=197.87torr253.04torr=0.7819

The mole fraction of cyclohexane in vapor pressure is 0.2180.

The mole fraction of 2-methylpentane in vapor pressure is 0.7819.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3. The vapour pressure of water at 50.0°C is 92.50 torr. When 12.6 g of glycerol are dissolved in 494 g of water, the vapour pressure is lowered to 92.04 torr. (a) What is the molar mass of glycerol? (b) What is the molecular formula of glycerol (a compound containing C, H, and O) from the following combustion analysis: when 2.00 g glycerol are combusted, 2.865 g CO₂ and 1.564 g H₂O are recovered.
At 300 K the vapor pressure of pure chloroform (CHCl3) is 0.261 atm and the vapor pressure of pure carbon tetrachloride (CCl4) is 0.155 atm. Mixing 46.9 g of chloroform with 49.6 g of carbon tetrachloride gives a solution that is nearly ideal. (a) Calculate the mole fraction of chloroform in the solution. Xchloroform in solution= (b) Calculate the total vapor pressure of the solution at 300 K. Total vapor pressure solution= (c) Calculate the mole fraction of chloroform in the vapor in equilibrium with the solution. Xchloroform in vapor = Submit Answer Retry Entire Group atm 9 more group attempts remaining
At 300 K, the vapor pressure of pure benzene (C6H6) is0.1355 atm and the vapor pressure of pure n-hexane(C6H14) is 0.2128 atm. Mixing 50.0 g of benzene with50.0 g of n-hexane gives a solution that is nearly ideal.(a) Calculate the mole fraction of benzene in the solution.(b) Calculate the total vapor pressure of the solution at     300 K.(c) Calculate the mole fraction of benzene in the vapor in     equilibrium with the solution.

Chapter 12 Solutions

Chemistry: Principles and Practice

Ch. 12 - Prob. 12.11QECh. 12 - Prob. 12.12QECh. 12 - Create a flow diagram, similar to those used in...Ch. 12 - Prob. 12.14QECh. 12 - Prob. 12.15QECh. 12 - Prob. 12.16QECh. 12 - Prob. 12.17QECh. 12 - Prob. 12.18QECh. 12 - Prob. 12.19QECh. 12 - Prob. 12.20QECh. 12 - Prob. 12.21QECh. 12 - Prob. 12.22QECh. 12 - Prob. 12.23QECh. 12 - Prob. 12.24QECh. 12 - Prob. 12.25QECh. 12 - Prob. 12.26QECh. 12 - Prob. 12.27QECh. 12 - What is the molality of copper(II) bromide (CuBr2)...Ch. 12 - Prob. 12.29QECh. 12 - Prob. 12.30QECh. 12 - A water solution of sodium hypochlorite (NaOCl) is...Ch. 12 - Prob. 12.32QECh. 12 - Prob. 12.33QECh. 12 - Vinegar is a 5.0% solution of acetic acid...Ch. 12 - Prob. 12.35QECh. 12 - A 2.77 M NaOH solution in water has a density of...Ch. 12 - The density of a 3.75 M aqueous sulfuric acid...Ch. 12 - Prob. 12.40QECh. 12 - Prob. 12.41QECh. 12 - Prob. 12.42QECh. 12 - Predict the relative solubility of each compound...Ch. 12 - Predict the relative solubility of each compound...Ch. 12 - Prob. 12.45QECh. 12 - Prob. 12.46QECh. 12 - Prob. 12.47QECh. 12 - Prob. 12.48QECh. 12 - Prob. 12.49QECh. 12 - The solubility of ethylene (C2H4) in water at 20 C...Ch. 12 - Prob. 12.51QECh. 12 - Prob. 12.52QECh. 12 - Prob. 12.53QECh. 12 - Prob. 12.54QECh. 12 - Prob. 12.55QECh. 12 - Prob. 12.56QECh. 12 - From the data presented in Figure 12.11, determine...Ch. 12 - Prob. 12.58QECh. 12 - Prob. 12.59QECh. 12 - Prob. 12.60QECh. 12 - Prob. 12.61QECh. 12 - Prob. 12.62QECh. 12 - The vapor pressure of chloroform (CHCl3) is 360...Ch. 12 - Prob. 12.64QECh. 12 - Prob. 12.65QECh. 12 - Prob. 12.66QECh. 12 - Prob. 12.67QECh. 12 - Prob. 12.68QECh. 12 - Prob. 12.69QECh. 12 - Prob. 12.70QECh. 12 - A solution of 1.00 g of a protein in 20.0 mL water...Ch. 12 - Prob. 12.72QECh. 12 - Arrange the following aqueous solutions in order...Ch. 12 - Arrange the following solutions in order of...Ch. 12 - Prob. 12.75QECh. 12 - An aqueous solution of sodium bromide freezes at...Ch. 12 - Prob. 12.77QECh. 12 - Prob. 12.78QECh. 12 - Prob. 12.79QECh. 12 - Prob. 12.80QECh. 12 - A 0.029 M solution of potassium sulfate has an...Ch. 12 - The freezing point of a 0.031-m solution of...Ch. 12 - Prob. 12.83QECh. 12 - Prob. 12.84QECh. 12 - Prob. 12.85QECh. 12 - Prob. 12.86QECh. 12 - Prob. 12.87QECh. 12 - Prob. 12.88QECh. 12 - Prob. 12.89QECh. 12 - Prob. 12.90QECh. 12 - Predict the relative solubility of each compound...Ch. 12 - Prob. 12.92QECh. 12 - Prob. 12.94QECh. 12 - Prob. 12.95QECh. 12 - Prob. 12.96QECh. 12 - Sketch graphs of total vapor pressure versus the...Ch. 12 - Prob. 12.98QECh. 12 - Prob. 12.99QECh. 12 - Prob. 12.100QECh. 12 - Prob. 12.101QECh. 12 - Prob. 12.102QECh. 12 - Prob. 12.103QECh. 12 - A 10.00-mL sample of a 24.00% solution of ammonium...Ch. 12 - Prob. 12.105QECh. 12 - In the 1986 Lake Nyos disaster (see the chapter...Ch. 12 - Prob. 12.107QE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY