Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 12.15QE
Interpretation Introduction
Interpretation:
The freezing points of sodium chloride and calcium chloride has the compared and the reason why one of these solutions has lower freezing point has to be explained.
Concept Introduction:
Colligative properties depend on the number of solute particles in the solution.
“i” is the number of particles that the solute will dissociate upon mixing with the solvent. With the help of molality of a solution and the number of particles a compound will dissolve to form, it is possible to predict the solution with lowest freezing point.
General steps:
- 1) Each solute has to be labeled as ionic or covalent.
- 2) Determine the number of ions in the formula, if the solute is ionic.
- 3) Multiply the molality of the solution by the number of particles formed when the solution dissolves. This gives the total concentration of particles dissolved.
- 4) Higher the concentration, lower the freezing point.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An essential part of the experimental design process is to select appropriate dependent and
independent variables.
True
False
10.00 g of Compound X with molecular formula C₂Hg are burned in a constant-pressure calorimeter containing 40.00 kg of water at 25 °C. The temperature of
the water is observed to rise by 2.604 °C. (You may assume all the heat released by the reaction is absorbed by the water, and none by the calorimeter itself.)
Calculate the standard heat of formation of Compound X at 25 °C.
Be sure your answer has a unit symbol, if necessary, and round it to the correct number of significant digits.
need help not sure what am doing wrong step by step please answer is 971A
During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration.
What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).
Chapter 12 Solutions
Chemistry: Principles and Practice
Ch. 12 - Prob. 12.1QECh. 12 - Prob. 12.2QECh. 12 - Prob. 12.3QECh. 12 - Prob. 12.4QECh. 12 - Prob. 12.5QECh. 12 - Prob. 12.6QECh. 12 - Prob. 12.7QECh. 12 - Prob. 12.8QECh. 12 - Prob. 12.9QECh. 12 - Prob. 12.10QE
Ch. 12 - Prob. 12.11QECh. 12 - Prob. 12.12QECh. 12 - Create a flow diagram, similar to those used in...Ch. 12 - Prob. 12.14QECh. 12 - Prob. 12.15QECh. 12 - Prob. 12.16QECh. 12 - Prob. 12.17QECh. 12 - Prob. 12.18QECh. 12 - Prob. 12.19QECh. 12 - Prob. 12.20QECh. 12 - Prob. 12.21QECh. 12 - Prob. 12.22QECh. 12 - Prob. 12.23QECh. 12 - Prob. 12.24QECh. 12 - Prob. 12.25QECh. 12 - Prob. 12.26QECh. 12 - Prob. 12.27QECh. 12 - What is the molality of copper(II) bromide (CuBr2)...Ch. 12 - Prob. 12.29QECh. 12 - Prob. 12.30QECh. 12 - A water solution of sodium hypochlorite (NaOCl) is...Ch. 12 - Prob. 12.32QECh. 12 - Prob. 12.33QECh. 12 - Vinegar is a 5.0% solution of acetic acid...Ch. 12 - Prob. 12.35QECh. 12 - A 2.77 M NaOH solution in water has a density of...Ch. 12 - The density of a 3.75 M aqueous sulfuric acid...Ch. 12 - Prob. 12.40QECh. 12 - Prob. 12.41QECh. 12 - Prob. 12.42QECh. 12 - Predict the relative solubility of each compound...Ch. 12 - Predict the relative solubility of each compound...Ch. 12 - Prob. 12.45QECh. 12 - Prob. 12.46QECh. 12 - Prob. 12.47QECh. 12 - Prob. 12.48QECh. 12 - Prob. 12.49QECh. 12 - The solubility of ethylene (C2H4) in water at 20 C...Ch. 12 - Prob. 12.51QECh. 12 - Prob. 12.52QECh. 12 - Prob. 12.53QECh. 12 - Prob. 12.54QECh. 12 - Prob. 12.55QECh. 12 - Prob. 12.56QECh. 12 - From the data presented in Figure 12.11, determine...Ch. 12 - Prob. 12.58QECh. 12 - Prob. 12.59QECh. 12 - Prob. 12.60QECh. 12 - Prob. 12.61QECh. 12 - Prob. 12.62QECh. 12 - The vapor pressure of chloroform (CHCl3) is 360...Ch. 12 - Prob. 12.64QECh. 12 - Prob. 12.65QECh. 12 - Prob. 12.66QECh. 12 - Prob. 12.67QECh. 12 - Prob. 12.68QECh. 12 - Prob. 12.69QECh. 12 - Prob. 12.70QECh. 12 - A solution of 1.00 g of a protein in 20.0 mL water...Ch. 12 - Prob. 12.72QECh. 12 - Arrange the following aqueous solutions in order...Ch. 12 - Arrange the following solutions in order of...Ch. 12 - Prob. 12.75QECh. 12 - An aqueous solution of sodium bromide freezes at...Ch. 12 - Prob. 12.77QECh. 12 - Prob. 12.78QECh. 12 - Prob. 12.79QECh. 12 - Prob. 12.80QECh. 12 - A 0.029 M solution of potassium sulfate has an...Ch. 12 - The freezing point of a 0.031-m solution of...Ch. 12 - Prob. 12.83QECh. 12 - Prob. 12.84QECh. 12 - Prob. 12.85QECh. 12 - Prob. 12.86QECh. 12 - Prob. 12.87QECh. 12 - Prob. 12.88QECh. 12 - Prob. 12.89QECh. 12 - Prob. 12.90QECh. 12 - Predict the relative solubility of each compound...Ch. 12 - Prob. 12.92QECh. 12 - Prob. 12.94QECh. 12 - Prob. 12.95QECh. 12 - Prob. 12.96QECh. 12 - Sketch graphs of total vapor pressure versus the...Ch. 12 - Prob. 12.98QECh. 12 - Prob. 12.99QECh. 12 - Prob. 12.100QECh. 12 - Prob. 12.101QECh. 12 - Prob. 12.102QECh. 12 - Prob. 12.103QECh. 12 - A 10.00-mL sample of a 24.00% solution of ammonium...Ch. 12 - Prob. 12.105QECh. 12 - In the 1986 Lake Nyos disaster (see the chapter...Ch. 12 - Prob. 12.107QE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Influence of salt concentrations on electrostatic interactions 2 Answer is 2.17A why not sure step by step please What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forwardThe name of the following molecule is: Νarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY