
Concept explainers
(a)
Interpretation:
The mole fraction of heptane and hexane in liquid phase has to be given.
Concept Introduction:
Mole fraction: Mole fraction of a substance in a solution is the number of moles of that substance divided by the total number of moles of all substances present. The formula is,
(a)

Explanation of Solution
Given,
Weight of hexane =
Weight of heptane =
Vapor pressure of hexane =
Vapor pressure of heptane =
The moles of heptane and hexane are calculated from their molar masses respectively.
Moles of hexane=
Moles of heptane=
The mole fraction of hexane in the liquid phase is calculated as,
Mole fraction of hexane=
Mole fraction of hexane=
Mole fraction of hexane=
The mole fraction of heptane is calculated from the mole fraction of hexane.
Mole fraction of heptane=
Mole fraction of heptane=
The mole fraction of hexane is
The mole fraction of heptane is
(b)
Interpretation:
The vapor pressures of hexane and heptane above the solution have to be given.
Concept Introduction:
The equilibrium between a liquid and its vapor produces a characteristic vapor pressure for each substance that depends on the temperature. The lowering of the vapor pressure is caused by a lesser ability of the solvent to evaporate, so equilibrium is reached with a smaller concentration of the solvent in the gas phase. The vapor pressure of a solution is expressed using Raoult’s law:
The vapor pressure of the solvent
(b)

Explanation of Solution
Given,
Weight of hexane =
Weight of heptane =
Vapor pressure of hexane =
Vapor pressure of heptane =
The moles of hexane are calculated from its molar mass.
Moles of hexane=
The mole fraction of hexane in the liquid phase is calculated as,
Mole fraction of hexane=
Mole fraction of hexane=
Mole fraction of hexane=
The vapor pressure of hexane is given as,
Vapor pressure of hexane=
Vapor pressure of hexane=
Vapor pressure of hexane=
The moles of heptane are calculated from its molar mass.
Moles of heptane=
The mole fraction of heptane is calculated from the mole fraction of hexane.
Mole fraction of heptane=
Mole fraction of heptane=
The vapor pressure of heptane is given as,
Vapor pressure of heptane=
Vapor pressure of heptane=
Vapor pressure of heptane=
The vapor pressure of hexane is
The vapor pressure of heptane is
(c)
Interpretation:
The mole fraction of heptane and hexane in vapor phase has to be given.
Concept Introduction:
Refer to part (a) and (b).
(c)

Explanation of Solution
The vapor pressure of hexane
The vapor pressure of heptane is
The total vapor pressure is
The mole fraction of hexane and hexane are calculated as,
Mole fraction=
Mole fraction of hexane=
Mole fraction of heptane=
The mole fraction of hexane in vapor pressure is
The mole fraction of heptane in vapor pressure is
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry: Principles and Practice
- Help me solve this problem.arrow_forwardDraw a mechanism for the following synthetic transformation including reagents and any isolable intermediates throughout the process. Please clearly indicate bond cleavage/formation using curly arrows. MeO2Carrow_forwardCHEM 310 Quiz 8 Organic Chemistry II Due: Tuesday, April 25th, at 11:59 pm. This quiz is open textbook / open notes - but you must work alone. You cannot use the internet or the solutions manual for the book. Scan in your work and record an explanation of your mechanism. You may record this any way that you like. One way would be to start an individual Zoom meeting, start recording, "share your screen" and then talk through the problem. This will be converted to an .mp4 file that you can upload into Canvas using the "record/upload media" feature. Pyridine, benzoic acid and benzene are dissolved in ethyl acetate. Design and provide a plan / flow chart for separating and isolating each of these components. Pyridine and benzene are liquids at room temperature. Benzoic acid is a solid. You have ethyl acetate, 2M NaOH, 2M HCI and anhydrous MgSO4 available, as well as all the glassware and equipment that you used in the organic lab this year. Provide accurate acid/base reactions for any…arrow_forward
- Can anyone help me solve this step by step. Thank you in advaarrow_forwardPlease draw the mechanism for this Friedel-crafts acylation reaction using arrowsarrow_forwardDraw the Fischer projection of D-fructose. Click and drag to start drawing a structure. Skip Part Check AP 14 tv SC F1 F2 80 F3 a F4 ! 2 # 3 CF F5 75 Ax MacBook Air 894 $ 5olo % Λ 6 > W F6 K F7 &arrow_forward
- Consider this step in a radical reaction: Y What type of step is this? Check all that apply. Draw the products of the step on the right-hand side of the drawing area below. If more than one set of products is possible, draw any set. Also, draw the mechanism arrows on the left-hand side of the drawing area to show how this happens. ionization propagation initialization passivation none of the abovearrow_forward22.16 The following groups are ortho-para directors. (a) -C=CH₂ H (d) -Br (b) -NH2 (c) -OCHS Draw a contributing structure for the resonance-stabilized cation formed during elec- trophilic aromatic substitution that shows the role of each group in stabilizing the intermediate by further delocalizing its positive charge. 22.17 Predict the major product or products from treatment of each compound with Cl₁/FeCl₂- OH (b) NO2 CHO 22.18 How do you account for the fact that phenyl acetate is less reactive toward electro- philic aromatic substitution than anisole? Phenyl acetate Anisole CH (d)arrow_forwardShow how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid.arrow_forward
- Help me solve this problem. Thank you in advance.arrow_forward22.7 Predict the monoalkylated products of the following reactions with benzene. (a) AlCl3 Ya (b) AlCl3 (c) H3PO4 (d) 22.8 Think-Pair-Share AICI3 The reaction below is a common electrophilic aromatic substitution. SO3 H₂SO4 SO₂H (a) Draw the reaction mechanism for this reaction using HSO,+ as the electrophile. (b) Sketch the reaction coordinate diagram, where the product is lower in energy than the starting reactant. (c) Which step in the reaction mechanism is highest in energy? Explain. (d) Which of the following reaction conditions could be used in an electrophilic aro- matic substitution with benzene to provide substituted phenyl derivatives? (i) AICI3 HNO3 H₂SO4 K2Cr2O7 (iii) H₂SO4 (iv) H₂PO₁arrow_forwardIs an acid-base reaction the only type of reaction that would cause leavening products to rise?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning




