Concept explainers
(a)
Interpretation:
The mole fraction of 2-methylpentane and cyclohexane in liquid phase has to be given.
Concept Introduction:
Mole fraction: Mole fraction of a substance in a solution is the number of moles of that substance divided by the total number of moles of all substances present. The formula is,
(a)
Answer to Problem 12.86QE
The mole fraction of cyclohexane is
The mole fraction of 2-methylpentane is
Explanation of Solution
Given,
Weight of cyclohexane =
Weight of 2-methylpentane =
Vapor pressure of cyclohexane =
Vapor pressure of 2-methylpentane =
The moles of 2-methylpentane and cyclohexane are calculated from their molar masses.
Moles of cyclohexane=
Moles of 2-methylpentane=
The mole fraction of cyclohexane in the liquid phase is calculated as,
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
The mole fraction of 2-methylpentane is calculated from the mole fraction of cyclohexane.
Mole fraction of 2-methylpentane=
Mole fraction of 2-methylpentane=
The mole fraction of cyclohexane is
The mole fraction of 2-methylpentane is
(b)
Interpretation:
The vapor pressures of cyclohexane and 2-methylpentane above the solution have to be given.
Concept Introduction:
The equilibrium between a liquid and its vapor produces a characteristic vapor pressure for each substance that depends on the temperature. The lowering of the vapor pressure is caused by a lesser ability of the solvent to evaporate, so equilibrium is reached with a smaller concentration of the solvent in the gas phase. The vapor pressure of a solution is expressed using Raoult’s law:
The vapor pressure of the solvent
(b)
Answer to Problem 12.86QE
The vapor pressure of cyclohexane is
The vapor pressure of 2-methylpentane is
Explanation of Solution
Given,
Weight of cyclohexane =
Weight of 2-methylpentane =
Vapor pressure of cyclohexane =
Vapor pressure of 2-methylpentane =
The moles of cyclohexane are calculated from its molar mass.
Moles of cyclohexane=
The mole fraction of cyclohexane in the liquid phase is calculated as,
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
The vapor pressure of cyclohexane is given as,
Vapor pressure of cyclohexane=
Vapor pressure of cyclohexane=
Vapor pressure of cyclohexane=
The moles of 2-methylpentane are calculated from its molar mass.
Moles of 2-methylpentane=
The mole fraction of 2-methylpentane is calculated from the mole fraction of cyclohexane.
Mole fraction of 2-methylpentane=
Mole fraction of 2-methylpentane=
The vapor pressure of 2-methylpentane is given as,
Vapor pressure of 2-methylpentane=
Vapor pressure of 2-methylpentane=
Vapor pressure of 2-methylpentane=
The vapor pressure of cyclohexane is
The vapor pressure of 2-methylpentane is
(c)
Interpretation:
The mole fraction of 2-methylpentane and cyclohexane in vapor phase has to be given.
Concept Introduction:
Refer to part (a) and (b).
(c)
Answer to Problem 12.86QE
The mole fraction of cyclohexane in vapor phase is
The mole fraction of 2-methylpentane in vapor phase is
Explanation of Solution
The vapor pressure of cyclohexane is
The vapor pressure of 2-methylpentane is
The total vapor pressure is
The mole fraction of cyclohexane and 2-methylpentane are calculated as,
Mole fraction=
Mole fraction of cyclohexane=
Mole fraction of 2-methylpentane=
The mole fraction of cyclohexane in vapor pressure is
The mole fraction of 2-methylpentane in vapor pressure is
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry: Principles and Practice
- 6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forwardWhat quantity of ethylene glycol, HOCH2CH2OH, must be added to 125 g of water to raise the boiling point by 1.0 C? Express the answer in grams.arrow_forwardA 1.00 mol/kg aqueous sulfuric acid solution, H2SO4,freezes at 4.04 C. Calculate i, the vant Hoff factor,for sulfuric acid in this solution.arrow_forward
- Predict the relative solubility of each compound in the two solvents, based on the intermolecular attractions. (a) Is potassium iodide more soluble in water or in methylene chloride (CH2Cl2)? (b) Is toluene (C6H5CH3) more soluble in benzene (C6H6) or in water? (c) Is ethylene glycol (C2H4(OH)2) more soluble in hexane (C6H14) or in ethanol (C2H5OH)?arrow_forwardPredict the relative solubility of each compound in the two solvents, on the basis of intermolecular attractions. (a) Is Br2 more soluble in water or in carbon tetrachloride? (b) Is CaCl2 more soluble in water or in benzene (C6H6)? (c) Is chloroform (CHCl3) more soluble in water or in diethyl ether [(C2H5)2O]? (d) Is ethylene glycol (HOCH2CH2OH) more soluble in water or in benzene (C6H6)?arrow_forwardPredict the relative solubility of each compound in the two solvents, on the basis of intermolecular attractions. (a) Is NaCl more soluble in water or in carbon tetrachloride? (b) Is I2 more soluble in water or in toluene (C6H5CH3)? (c) Is ethanol (C2H5OH) more soluble in hexane or in water? (d) Is ethylene glycol (HOCH2CH2OH) more soluble in ethanol or in benzene (C6H6)?arrow_forward
- Calculate the freezing point of 525 g of water that contains 25.0 g of NaCl. Assume i, the vant Hoff factor, is 1.85 for NaCl.arrow_forwardIn the 1986 Lake Nyos disaster (see the chapter introduction), an estimated 90 billion kilograms of CO2 was dissolved in the lake at the time. (a) What volume of gas is this at standard temperature and pressure? (b) Assuming that this dissolved gas was in equilibrium with the normal partial pressure of CO2 in the atmosphere (0.038%, or 0.29 torr), use the Henrys law constant for CO2 in water to estimate the volume of Lake Nyos.arrow_forward1. Vapor pressure: Arrange the following aqueous solutions in order of increasing vapor pressure at 25°C: 0.35 m C2H4(OH)2 (ethylene glycol, nonvolatile solute); 0.50 m sugar; 0.20 m KBr; and 0.20 m Na2SO4. C2H4(OH)2 < sugar < KBr < Na2SO4 Na2SO4 < sugar < KBr < C2H4(OH)2 sugar < C2H4(OH)2 < KBr < Na2SO4 KBr < sugar < Na2SO4 < C2H4(OH)2arrow_forward
- Fluoridation of city water supplies has been practiced in the United States for several decades. It is done by continuously adding sodium fluoride to water as it comes from a reservoir. Assume you live in a medium-sized city of 150,000 people and that 660 L (170 gal) of water is used per person per day. What mass of sodium fluoride (in kilograms) must be added to the water supply each year (365 days) to have the required fluoride concentration of 1 ppm (part per million)that is, 1 kilogram of fluoride per 1 million kilograms of water? (Sodium fluoride is 45.0% fluoride, and water has a density of 1.00 g/cm3.)arrow_forwardThe density of a 3.75 M aqueous sulfuric acid solution in a car battery is 1.225 g/mL. Express the concentration of the solution in molality, mole fraction H2SO2, and mass percentage of H2SO4.arrow_forward6-68 If we add 175 g of ethylene glycol, C2H6O2, per 1000. g of water to a car radiator, what will be the freezing point of the solution?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning