
Concept explainers
(a)
Interpretation:
The mole fraction of 2-methylpentane and cyclohexane in liquid phase has to be given.
Concept Introduction:
Mole fraction: Mole fraction of a substance in a solution is the number of moles of that substance divided by the total number of moles of all substances present. The formula is,
(a)

Answer to Problem 12.86QE
The mole fraction of cyclohexane is
The mole fraction of 2-methylpentane is
Explanation of Solution
Given,
Weight of cyclohexane =
Weight of 2-methylpentane =
Vapor pressure of cyclohexane =
Vapor pressure of 2-methylpentane =
The moles of 2-methylpentane and cyclohexane are calculated from their molar masses.
Moles of cyclohexane=
Moles of 2-methylpentane=
The mole fraction of cyclohexane in the liquid phase is calculated as,
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
The mole fraction of 2-methylpentane is calculated from the mole fraction of cyclohexane.
Mole fraction of 2-methylpentane=
Mole fraction of 2-methylpentane=
The mole fraction of cyclohexane is
The mole fraction of 2-methylpentane is
(b)
Interpretation:
The vapor pressures of cyclohexane and 2-methylpentane above the solution have to be given.
Concept Introduction:
The equilibrium between a liquid and its vapor produces a characteristic vapor pressure for each substance that depends on the temperature. The lowering of the vapor pressure is caused by a lesser ability of the solvent to evaporate, so equilibrium is reached with a smaller concentration of the solvent in the gas phase. The vapor pressure of a solution is expressed using Raoult’s law:
The vapor pressure of the solvent
(b)

Answer to Problem 12.86QE
The vapor pressure of cyclohexane is
The vapor pressure of 2-methylpentane is
Explanation of Solution
Given,
Weight of cyclohexane =
Weight of 2-methylpentane =
Vapor pressure of cyclohexane =
Vapor pressure of 2-methylpentane =
The moles of cyclohexane are calculated from its molar mass.
Moles of cyclohexane=
The mole fraction of cyclohexane in the liquid phase is calculated as,
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
The vapor pressure of cyclohexane is given as,
Vapor pressure of cyclohexane=
Vapor pressure of cyclohexane=
Vapor pressure of cyclohexane=
The moles of 2-methylpentane are calculated from its molar mass.
Moles of 2-methylpentane=
The mole fraction of 2-methylpentane is calculated from the mole fraction of cyclohexane.
Mole fraction of 2-methylpentane=
Mole fraction of 2-methylpentane=
The vapor pressure of 2-methylpentane is given as,
Vapor pressure of 2-methylpentane=
Vapor pressure of 2-methylpentane=
Vapor pressure of 2-methylpentane=
The vapor pressure of cyclohexane is
The vapor pressure of 2-methylpentane is
(c)
Interpretation:
The mole fraction of 2-methylpentane and cyclohexane in vapor phase has to be given.
Concept Introduction:
Refer to part (a) and (b).
(c)

Answer to Problem 12.86QE
The mole fraction of cyclohexane in vapor phase is
The mole fraction of 2-methylpentane in vapor phase is
Explanation of Solution
The vapor pressure of cyclohexane is
The vapor pressure of 2-methylpentane is
The total vapor pressure is
The mole fraction of cyclohexane and 2-methylpentane are calculated as,
Mole fraction=
Mole fraction of cyclohexane=
Mole fraction of 2-methylpentane=
The mole fraction of cyclohexane in vapor pressure is
The mole fraction of 2-methylpentane in vapor pressure is
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry: Principles and Practice
- Please help me find the 1/Time, Log [I^-] Log [S2O8^2-], Log(time) on the data table. With calculation steps. And the average for runs 1a-1b. Please help me thanks in advance. Will up vote!arrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br "CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forwardExperiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning




