Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 12.87QE
(a)
Interpretation Introduction
Interpretation:
Vapor pressure of acetic acid and 1,1-dibromoethane has to be calculated and also the total vapor pressure has to be calculated.
Concept Introduction:
Raoult’s law states that the vapor pressure of solvent that is above the dilute solution is equal to the product of mole fraction of solvent and the vapor pressure of the pure solvent.
(b)
Interpretation Introduction
Interpretation:
The deviation of the azeotropic mixture from Raoult’s law is positive or negative has to be given.
(c)
Interpretation Introduction
Interpretation:
Attractive forces between the acetic acid and 1,1-dibromoethane has to be compared with those in two pure substances.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When 8.79g of benzoic acid, C7H6O2, are mixed with 325g of phenol, the mixture freezes at 39.26°C. The freezing point of pure phenol is 40.90°C. What is the freezing point constant for phenol?
Phenol (C6H5OH) is partially dimerized in the solvent bromoform. When 2.58 g of phenol is dissolved in 100 g of bromoform, the bromoform freezing point is lowered by 2.37°C. Pure bromoform freezes at 8.3°C and has kf = 14.1°C kg/mol. Calculate the equilibrium constant Km for the dimerization reaction of phenol in bromoform at 6°C, assuming an ideally dilute solution.
can you help with sub questions A, B and C
Chapter 12 Solutions
Chemistry: Principles and Practice
Ch. 12 - Prob. 12.1QECh. 12 - Prob. 12.2QECh. 12 - Prob. 12.3QECh. 12 - Prob. 12.4QECh. 12 - Prob. 12.5QECh. 12 - Prob. 12.6QECh. 12 - Prob. 12.7QECh. 12 - Prob. 12.8QECh. 12 - Prob. 12.9QECh. 12 - Prob. 12.10QE
Ch. 12 - Prob. 12.11QECh. 12 - Prob. 12.12QECh. 12 - Create a flow diagram, similar to those used in...Ch. 12 - Prob. 12.14QECh. 12 - Prob. 12.15QECh. 12 - Prob. 12.16QECh. 12 - Prob. 12.17QECh. 12 - Prob. 12.18QECh. 12 - Prob. 12.19QECh. 12 - Prob. 12.20QECh. 12 - Prob. 12.21QECh. 12 - Prob. 12.22QECh. 12 - Prob. 12.23QECh. 12 - Prob. 12.24QECh. 12 - Prob. 12.25QECh. 12 - Prob. 12.26QECh. 12 - Prob. 12.27QECh. 12 - What is the molality of copper(II) bromide (CuBr2)...Ch. 12 - Prob. 12.29QECh. 12 - Prob. 12.30QECh. 12 - A water solution of sodium hypochlorite (NaOCl) is...Ch. 12 - Prob. 12.32QECh. 12 - Prob. 12.33QECh. 12 - Vinegar is a 5.0% solution of acetic acid...Ch. 12 - Prob. 12.35QECh. 12 - A 2.77 M NaOH solution in water has a density of...Ch. 12 - The density of a 3.75 M aqueous sulfuric acid...Ch. 12 - Prob. 12.40QECh. 12 - Prob. 12.41QECh. 12 - Prob. 12.42QECh. 12 - Predict the relative solubility of each compound...Ch. 12 - Predict the relative solubility of each compound...Ch. 12 - Prob. 12.45QECh. 12 - Prob. 12.46QECh. 12 - Prob. 12.47QECh. 12 - Prob. 12.48QECh. 12 - Prob. 12.49QECh. 12 - The solubility of ethylene (C2H4) in water at 20 C...Ch. 12 - Prob. 12.51QECh. 12 - Prob. 12.52QECh. 12 - Prob. 12.53QECh. 12 - Prob. 12.54QECh. 12 - Prob. 12.55QECh. 12 - Prob. 12.56QECh. 12 - From the data presented in Figure 12.11, determine...Ch. 12 - Prob. 12.58QECh. 12 - Prob. 12.59QECh. 12 - Prob. 12.60QECh. 12 - Prob. 12.61QECh. 12 - Prob. 12.62QECh. 12 - The vapor pressure of chloroform (CHCl3) is 360...Ch. 12 - Prob. 12.64QECh. 12 - Prob. 12.65QECh. 12 - Prob. 12.66QECh. 12 - Prob. 12.67QECh. 12 - Prob. 12.68QECh. 12 - Prob. 12.69QECh. 12 - Prob. 12.70QECh. 12 - A solution of 1.00 g of a protein in 20.0 mL water...Ch. 12 - Prob. 12.72QECh. 12 - Arrange the following aqueous solutions in order...Ch. 12 - Arrange the following solutions in order of...Ch. 12 - Prob. 12.75QECh. 12 - An aqueous solution of sodium bromide freezes at...Ch. 12 - Prob. 12.77QECh. 12 - Prob. 12.78QECh. 12 - Prob. 12.79QECh. 12 - Prob. 12.80QECh. 12 - A 0.029 M solution of potassium sulfate has an...Ch. 12 - The freezing point of a 0.031-m solution of...Ch. 12 - Prob. 12.83QECh. 12 - Prob. 12.84QECh. 12 - Prob. 12.85QECh. 12 - Prob. 12.86QECh. 12 - Prob. 12.87QECh. 12 - Prob. 12.88QECh. 12 - Prob. 12.89QECh. 12 - Prob. 12.90QECh. 12 - Predict the relative solubility of each compound...Ch. 12 - Prob. 12.92QECh. 12 - Prob. 12.94QECh. 12 - Prob. 12.95QECh. 12 - Prob. 12.96QECh. 12 - Sketch graphs of total vapor pressure versus the...Ch. 12 - Prob. 12.98QECh. 12 - Prob. 12.99QECh. 12 - Prob. 12.100QECh. 12 - Prob. 12.101QECh. 12 - Prob. 12.102QECh. 12 - Prob. 12.103QECh. 12 - A 10.00-mL sample of a 24.00% solution of ammonium...Ch. 12 - Prob. 12.105QECh. 12 - In the 1986 Lake Nyos disaster (see the chapter...Ch. 12 - Prob. 12.107QE
Knowledge Booster
Similar questions
- 6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forwardFor each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Ammonia gas in water with P = 1 atm and T = 50C Ammonia gas in water with P = 1 atm and T = 90C b. Carbon dioxide gas in water with P = 2 atm and T = 50C Carbon dioxide gas in water with P = 1 atm and T = 50C c. Table salt in water with P = 1 atm and T = 60C Table salt in water with P = 1 atm and T = 50C d. Table sugar in water with P = 2 atm and T = 40C Table sugar in water with P = 1 atm and T = 70Carrow_forwardPredict the relative solubility of each compound in the two solvents, on the basis of intermolecular attractions. (a) Is Br2 more soluble in water or in carbon tetrachloride? (b) Is CaCl2 more soluble in water or in benzene (C6H6)? (c) Is chloroform (CHCl3) more soluble in water or in diethyl ether [(C2H5)2O]? (d) Is ethylene glycol (HOCH2CH2OH) more soluble in water or in benzene (C6H6)?arrow_forward
- Predict the relative solubility of each compound in the two solvents, based on the intermolecular attractions. (a) Is potassium iodide more soluble in water or in methylene chloride (CH2Cl2)? (b) Is toluene (C6H5CH3) more soluble in benzene (C6H6) or in water? (c) Is ethylene glycol (C2H4(OH)2) more soluble in hexane (C6H14) or in ethanol (C2H5OH)?arrow_forwardAt 297 K the vapor pressure of pure 2-butanone (CH3COCH₂CH3) is 0.126 atm and the vapor pressure of pure acetone (CH3COCH3) is 0.261 atm. Mixing 51.6 g of 2- butanone with 48.5 g of acetone gives a solution that is nearly ideal. (a) Calculate the mole fraction of 2-butanone in the solution. X2-butanone in solution = (b) Calculate the total vapor pressure of the solution at 297 K. Total vapor pressure solution = (c) Calculate the mole fraction of 2-butanone in the vapor in equilibrium with the solution. X. 2-butanone atm in vapor =arrow_forwardA certain liquid X has a normal freezing point of 7.00°C and a freezing point depression constant =Kf 7.41·°C·kgmol−1. A solution is prepared by dissolving some iron(III) chloride (FeCl3) in 700.g of X. This solution freezes at 3.5°C. Calculate the mass of FeCl3 that was dissolved. Be sure your answer is rounded to the correct number of significiant digits.arrow_forward
- Henry's constant for the solubility of ethylene gas in H2O at 20 degrees C is 10.1 x 10-5 atm-1 Calculate the mass of ethylene gas that wceill dissolve in 1000 g of H2O under an ethylene- pressure of 2 atm at 20 degrees C. Given: Methylene = 28 g mol-1 and M(H2O) = 18 g mol-1arrow_forwardCalculate the value of the equilibrium constant, Ke, for the reaction Q(g) + X(g) 2 M(g) + N(g) given that Ke = M(g) = Z(g) 6R(g) = 2N(g) + 4 Z(g) 3 X(g) + 3 Q(g) = 9R(g) .116 Kel = 3.57 Kc2 = 0.524 Kc3 = 14.6arrow_forwardCalculate the value of the equilibrium constant, Kc, for the reaction Q(g) + X(g) 2 M(g) + N(g) given that Kc = M(g) = Z(g) 6R(g) — 2N(g) + 4 Z(g) 3 X(g) + 3 Q(g) = 9R(g) Kc1 = 3.01 Kc2 = 0.433 Kc3 = 12.5arrow_forward
- A polymer of large molar mass is dissolved in the organic solvent tetrahydrofuran (C4H8O) at 25 °C, and the resulting solution rises to a final height of 12.7 cm above the level of the pure solvent, as solvent molecules pass through a semipermeable membrane into the solution. If the solution contains 3.61 g polymer per liter, calculate the molar mass of the polymer. Take the density of the solution to be 0.886 g cm³³. g mol-1 Molar mass polymer =arrow_forwardWhen 605. mg of a certain molecular compound X are dissolved in 100. g of cyclohexane (CH₁₂), the freezing point of the solution is measured to be 6.4 °C. Calculate the molar mass of X. If you need any additional information on cyclohexane, use only what you find in the ALEKS Data resource. Also, be sure your answer has a unit symbol, and t is rounded to I significant digit. 0 8 0.8 D-D X 4 Garrow_forwardCalculate the freezing point of 1.25 m sucrose dissolved in formic acid. The Kf of formic acid is 2.76 °C m-1 and its freezing point is 8.40 °C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning