![Organic And Biological Chemistry](https://www.bartleby.com/isbn_cover_images/9781305081079/9781305081079_largeCoverImage.gif)
(a)
Interpretation: To classify each of the following molecules as (1) an oxidizing agent, (2) a reducing agent, or (3) neither an oxidizing agent nor a reducing agent.
a. NADH
b. ATP
c. FAD
d. CoA–SH
Concept introduction: The sum of various
ATP is a
Flavin adenine dinucleotideexists in two forms: oxidized form
Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation.
Oxidizing agents are those species which gets reduced and oxidizes the other species present in the chemical reaction. Reducing agent is those species which gets oxidized and reduces the other species present in a chemical reaction. Generally, oxidizing agents are electron acceptor and reducing agents are electron donor.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 12.44EP
Explanation of Solution
Nicotinamide adenine dinucleotide exists in two forms:
Here
(b)
Interpretation: To classify each of the following molecules as (1) an oxidizing agent, (2) a reducing agent, or (3) neither an oxidizing agent nor a reducing agent.
a. NADH
b. ATP
c. FAD
d. CoA–SH
Concept introduction: The sum of various chemical reactions occurring in the human body is called metabolism and the reactions individually are known as metabolic reactions. During these metabolic reactions, the various metabolic intermediates are formed for the short time to complete the reactions.ATP,
ATP is a nucleotide which provides energy for the completion of various metabolic reactions occurring in our human body. The structure of ATP consists of adenine base, ribose sugar unit and the three phosphate groupconnected to each other by phosphoanhydride bonds.
Flavin adenine dinucleotideexists in two forms: oxidized form
Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation.
Oxidizing agents are those species which gets reduced and oxidizes the other species present in the chemical reaction. Reducing agent is those species which gets oxidized and reduces the other species present in a chemical reaction. Generally, oxidizing agents are electron acceptor and reducing agents are electron donor.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 12.44EP
ATP molecule is neither a reducing agent nor an oxidizing agent in metabolic reactions.
Explanation of Solution
Adenosine triphosphate (ATP) is anucleotide which structural component is one unit of the adenine base, one unit of ribose sugar and three units of a phosphate group. It can be converted into its monophosphate form(AMP) and diphosphate form(ADP) by losing a phosphate group. The reaction to this change is:
Here ATP is not involved in electron transfer hence it is neither a reducing agent nor an oxidizing agent.
(c)
Interpretation: To classify each of the following molecules as (1) an oxidizing agent, (2) a reducing agent, or (3) neither an oxidizing agent nor a reducing agent.
a. NADH
b. ATP
c. FAD
d. CoA–SH
Concept introduction: The sum of various chemical reactions occurring in the human body is called metabolism and the reactions individually are known as metabolic reactions. During these metabolic reactions, the various metabolic intermediates are formed for the short time to complete the reactions.ATP,
ATP is a nucleotide which provides energy for the completion of various metabolic reactions occurring in our human body. The structure of ATP consists of adenine base, ribose sugar unit and the three phosphate groupconnected to each other by phosphoanhydride bonds.
Flavin adenine dinucleotideexists in two forms: oxidized form
Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation.
Oxidizing agents are those species which gets reduced and oxidizes the other species present in the chemical reaction. Reducing agent is those species which gets oxidized and reduces the other species present in a chemical reaction. Generally, oxidizing agents are electron acceptor and reducing agents are electron donor.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 12.44EP
Explanation of Solution
Flavin adenine dinucleotide exists in two forms:
Here
(d)
Interpretation: To classify each of the following molecules as (1) an oxidizing agent, (2) a reducing agent, or (3) neither an oxidizing agent nor a reducing agent.
a. NADH
b. ATP
c. FAD
d. CoA–SH
Concept introduction: The sum of various chemical reactions occurring in the human body is called metabolism and the reactions individually are known as metabolic reactions. During these metabolic reactions, the various metabolic intermediates are formed for the short time to complete the reactions.ATP,
ATP is a nucleotide which provides energy for the completion of various metabolic reactions occurring in our human body. The structure of ATP consists of adenine base, ribose sugar unit and the three phosphate groupconnected to each other by phosphoanhydride bonds.
Flavin adenine dinucleotideexists in two forms: oxidized form
Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation.
Oxidizing agents are those species which gets reduced and oxidizes the other species present in the chemical reaction. Reducing agent is those species which gets oxidized and reduces the other species present in a chemical reaction. Generally, oxidizing agents are electron acceptor and reducing agents are electron donor.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 12.44EP
Coenzyme A (CoA–SH) molecule is neither a reducing agent nor an oxidizing agent in metabolic reactions.
Explanation of Solution
Coenzyme A (CoA) is a coenzyme whose structure is based on the B vitamin pantothenic acid. Its structure consists of three subunits: 2-Aminoethanethiol, pantothenic acid, and phosphorylated ADP.
Coenzyme A is always in equilibrium with its acetyl form and therefore helps in transfer of acetyl group in metabolic reaction. The reaction for this change is
Here Coenzyme A (CoA) is not involved in electron transfer hence it is neithera reducing agent nor an oxidizing agent.
a.
b. ATP molecule is neither a reducing agent nor an oxidizing agent in metabolic reactions.
c.
d. Coenzyme A (CoA–SH) molecule is neither a reducing agent nor an oxidizing agent in metabolic reactions.
Want to see more full solutions like this?
Chapter 12 Solutions
Organic And Biological Chemistry
- 1. For the four structures provided, Please answer the following questions in the table below. a. Please draw π molecular orbital diagram (use the polygon-and-circle method if appropriate) and fill electrons in each molecular orbital b. Please indicate the number of π electrons c. Please indicate if each molecule provided is anti-aromatic, aromatic, or non- aromatic TT MO diagram Number of π e- Aromaticity Evaluation (X choose one) Non-aromatic Aromatic Anti-aromatic || ||| + IVarrow_forward1.3 grams of pottasium iodide is placed in 100 mL of o.11 mol/L lead nitrate solution. At room temperature, lead iodide has a Ksp of 4.4x10^-9. How many moles of precipitate will form?arrow_forwardQ3: Circle the molecules that are optically active: ДДДДarrow_forward
- 6. How many peaks would be observed for each of the circled protons in the compounds below? 8 pts CH3 CH3 ΤΙ A. H3C-C-C-CH3 I (₁₁ +1)= 7 H CI B. H3C-C-CI H (3+1)=4 H LIH)=2 C. (CH3CH2-C-OH H D. CH3arrow_forwardNonearrow_forwardQ1: Draw the most stable and the least stable Newman projections about the C2-C3 bond for each of the following isomers (A-C). Are the barriers to rotation identical for enantiomers A and B? How about the diastereomers (A versus C or B versus C)? H Br H Br (S) CH3 (R) CH3 H3C (S) H3C H Br Br H A C enantiomers H Br H Br (R) CH3 H3C (R) (S) CH3 H3C H Br Br H B D identicalarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084476/9781305084476_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399692/9781337399692_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960060/9781305960060_smallCoverImage.gif)