![Essentials of Materials Science and Engineering, SI Edition](https://www.bartleby.com/isbn_cover_images/9781337672078/9781337672078_largeCoverImage.jpg)
Interpretation:
The difference between precipitation hardening and dispersion strengthening needs to be explained.
Concept Introduction:
The precipitation hardening is termed as age or particle hardening. It is a technique involving the heat treatment of malleable materials to increase their yield strength. The materials are generally structural alloys of magnesium, aluminum, titanium, nickel and few sheets of steel or stainless steels. It makes the metal to become stronger. In the beginning of the process, uniformly dispersed particles are produced within a metal's grain structure which helps hinder the motion and strengthen it if specifically, the metals are malleable.
Dispersion strengthening is referred to as the method of growing the toughness of a metallic object by presenting the second phase with the addition of an alloying part.
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Chapter 12 Solutions
Essentials of Materials Science and Engineering, SI Edition
- Compare the security services provided by a digital signature (DS) with those of a message authentication code (MAC). Assume that Oscar can observe all messages sent between Rina and Naseem. Oscar has no knowledge of any keys but the public one, in the case of DS. State whether DS and MAC protect against each attack and, if they do, how. The value auth(x) is computed with a DS or a MAC algorithm. In each scenario, assume the message M = x#####auth(x). (Message integrity) Rina has the textual data x = “Transfer $1000 to Mark” to send to Naseem. To ensure the integrity of the data, Rina generates auth(x), forms a message M, and then sends M in cleartext to Naseem. Oscar intercepts the message and replaces “Mark” with “Oscar.” Will Naseem detect this in the case of either DS or MAC? If yes, how will Naseem detect it? If not, why? (Replay) Rina has the textual data x = “Transfer $1000 to Mark” to send to Naseem. To ensure the integrity of the data, Rina generates auth(x), forms a message…arrow_forwardFundamentals of Energy Systems HW 4 Q1arrow_forwardFundamentals of Energy Systems HW 4 Q4arrow_forward
- Fundamentals of Energy Systems HW 4 Q6arrow_forward4.5arrow_forwardConstruct a battery pack to deliver 360V and 450-mile range for a vehicle that consumes 200 Wh/mile, from prismatic cells with 25Ah and 3.6 V. Physical dimensions of the cell are 0.5 cm thickness, 20 cm width and 40 cm length. a) Report configuration of the battery pack. 10-points b) Resistance of each cell is 0.05 Ohm, calculate the total internal resistance of the battery pack. 10-points c) Calculate the voltage drop during discharge when the battery is discharged at 100A. 10-points d) Calculate the amount of anode and cathode to build a prismatic cell with 25Ah capacity. Assume the cell chemistry as: Si anode and [Li(Ni1/3Co1/3Mn1/3)O2] cathode. Atomic weight of elements: Li=7, Si = 28, Ni=58, Co=59, Mn=55, O=16, 10-points e) Calculate the theoretical specific energy (Wh/kg) and practical energy density (Wh/liter) of the battery pack. 10-points f) Calculate the thickness on anode and cathode coating assuming each electrode has 30%…arrow_forward
- Phosphoric acid (H3PO4) is a triprotic acid. Na2HPO4 is added to deionized water at a concentration of 0.02 M. A. Write the mass balance for this solution B. Write the charge balance for this solution C. Write the proton condition for this solutionarrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardFor the beam shown, where is the peak value of the bending moment diagram? P a. Above C b. Below B c. Above A d. Above B Barrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337385497/9781337385497_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133691808/9781133691808_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073376356/9780073376356_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134589657/9780134589657_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781119175483/9781119175483_smallCoverImage.gif)