(a)
Interpretation:
The atoms of a main-group element in period
Concept introduction:
On moving from left to right in a periodic table, the effective nuclear charge increases. The effective nuclear charge pulls the valence electrons closer to the nucleus. Thus, the atom becomes smaller.
On moving from top to bottom in the group, the higher principal energy levels become farther from the nucleus. Therefore, the effective nuclear charge cannot pull the valence electrons closer to the nucleus. Thus, the atom size becomes larger.
(b)
Interpretation:
The atoms of a main-group element in period
Concept introduction:
On moving from left to right in a periodic table, the effective nuclear charge increases. The effective nuclear charge pulls the valence electrons closer to the nucleus. Thus, the atom becomes smaller.
On moving from top to bottom in the group, the higher principal energy levels become farther from the nucleus. Therefore, the effective nuclear charge cannot pull the valence electrons closer to the nucleus. Thus, the atom size becomes larger.
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Introductory Chemistry: An Active Learning Approach
- The electron configuration of the isotope 16O is 1s22s22p4. What is the electron configuration of the isotope 18O?arrow_forward2-102 An element consists of 90.51% of an isotope with a mass of 19.992 amu, 0.27% of an isotope with a mass of 20.994 amu, and 9.22% of an isotope with a mass of 21.990 amu. Calculate the average atomic mass and identify the element.arrow_forwardIn each of the following sets of elements, indicate which element has the smallest atomic size. msp;a.Na,K,Rbc.N,P,Asb.Na,Si,Sd.N,O,Farrow_forward
- 2-89 Assume that a new element has been discovered with atomic number 117. Its chemical properties should be similar to those of astatine (At). Predict whether the new element’s ionization energy will be greater than, the same as, or smaller than that of: (a)At (b)Raarrow_forwardParticles called muons exist in cosmic rays and can be created in particle accelerators. Muons are very similar to electrons, having the same charge and spin, but they have a mass 207 times greater. When muons arecaptured by an atom, they orbit just like an electron but with a smaller radius, since the mass in aB =0.529x 10-10 m is 207 me .(a) Calculate the radius of the n=1 orbit for a muon in a uranium ion( Z=92).(b) Compare this with the 7.5-fm radius of a uranium nucleus. Note that since the muon orbits inside the electron, it falls into a hydrogen-like orbit. Since your answer is less than the radius of the nucleus, you can seethat the photons emitted as the muon falls into its lowest orbit can give information about the nucleus.arrow_forwardIdentify the shell, subshell, and number of electrons for the following: (a)2p3 . (b) 4d9 . (c) 3s1 . (d) 5g16 .arrow_forward
- What is meant by the ground state of an atom? (a) All of the quantum numbers have their lowest values (n = 1, l = m = 0). (b) The principal quantum number of the electrons in the outer shell is 1. (c) All of the electrons are in the lowest energy state, consistent with the exclusion principle. (d) The electrons are in the lowest state allowed by the uncertainty principle.arrow_forward18. (a) What did Ernest Rutherford observe during his experiments? (b) What did Niels Bohr observe during his experiments? (c) How did the work of each scientist contribute to the development of the planetary model of the atom? Explain your ideas in at least four (4) sentences.arrow_forwardQuestion 20 Answer the following questions: (a) Without using quantum numbers, describe the differences between the shells, subshells, and orbitals of an atom. (b) How do the quantum numbers of the shells, subshells, and orbitals of an atom differ? Question 21 Identify the subshell in which electrons with the following quantum numbers are found: (a) n = 2, l = 1 (b) n = 4, l = 2 (c) n = 6, l = 0arrow_forward
- 2. (a) What is the smallest atom in group 13?(b) What is the smallest atom of the atoms Te, In, Sr, Po, Sb? Why is that?arrow_forwardBoron, atomic number 5, occurs naturally as two isotopes, 10B and 11B, with natural abundances of 19.9% and 80.1%, respectively.(a) In what ways do the two isotopes differ from each other? Does the electronic configuration of 10B differ from that of 11B? (b) Drawthe orbital diagram for an atom of 11B. Which electrons are the valence electrons? (c) Indicate three ways in which the 1s electrons inboron differ from its 2s electrons. (d) Elemental boron reacts with fluorine to form BF3, a gas. Write a balanced chemical equation forthe reaction of solid boron with fluorine gas. (e) ΔHf° for BF31g2 is -1135.6 kJ>mol. Calculate the standard enthalpy change in thereaction of boron with fluorine. (f) Will the mass percentage of F be the same in 10BF3 and 11BF3? If not, why is that the case?arrow_forward5 onlyarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning