Concept explainers
Interpretation:
The various other parts of the entire
Concept Introduction:
Electromagnetic radiation is a form of energy and it consists of electric field as well as magnetic field. Electromagnetic radiation has wave like properties.
Light is a electromagnetic radiation having speed of
Answer to Problem 1E
The other parts of the entire electromagnetic spectrum are gamma rays, x-rays, ultraviolet radiation, infrared radiation, microwave, and radio waves.
The common parts of everyday vocabulary are X-rays, microwaves and radio waves.
Explanation of Solution
The other parts of the entire electromagnetic spectrum are gamma rays, x-rays, ultraviolet radiation, infrared radiation, microwave, and radio waves.
Gamma rays and x-rays are very energetic. These are used to destroy the cancer cells. Ultraviolet radiation, infrared radiation and microwave are used to determine the structure of organic and inorganic compounds. Radio waves are used in radios.
X-rays, microwaves and radio waves are commonly part of everyday vocabulary.
The other parts of the whole electromagnetic spectrum are gamma rays, x-rays, ultraviolet radiation, infrared radiation, microwave, and radio waves.
X-rays, microwaves and radio waves are widely used in everyday vocabulary.
Want to see more full solutions like this?
Chapter 11 Solutions
Introductory Chemistry: An Active Learning Approach
- RGB color television and computer displays use cathode ray tubes that produce colors by mixing red, green, and blue light. If we look at the screen with a magnifying glass, we can see individual dots turn on and off as the colors change. Using a spectrum of visible light, determine the approximate wavelength of each of these colors. What is the frequency and energy of a photon of each of these colors?arrow_forwardHow many unpaired electrons are there in an atom of (a) phosphorus? (b) potassium? (c) plutonium (Pu)?arrow_forwardHow many electrons in an atom can have the following quantum designation? (a) 1s (b) 4d, m l =0(c) n=5,l=2arrow_forward
- Determine whether each statement that follows is true or false: a Electron energies are quantized in excited states but not in the ground state. b Line spectra of the elements are experimental evidence of the quantization of electron energies. c Energy is released as an electron passes from ground state to an excited state. d The energy of an electron may be between two quantized energy levels. e The Bohr model explanation of line spectra is still thought to be correct. f The quantum mechanical model of the atom describes orbitals in which electrons travel around the nucleus. g Orbitals are regions in which there is a high probability of finding an electron. h All energy sublevels have the same number of orbitals. i The 3p orbitals of an atom are larger than its 2p orbitals but smaller than its 4p orbitals. j At a given sublevel, the maximum number of d electrons is 5. k The halogens are found in Group 7A/17 of the periodic table. l The dot structure of the alkaline earths is X, where X is the symbol of element in the family. m Stable ions formed by alkaline earth metals are isoelectronic with noble gas atoms. n Atomic numbers 23 and 45 both belong to transition elements. o Atomic number 52, 35, and 18 are arranged in order of increasing atomic size. p Atomic number 7, 16, and 35 are all nonmetals.arrow_forwardCharacterize the Bohr model of the atom. In the Bohr model, what do we mean when we say something is quantized? How does the Bohr model of the hydrogen atom explain the hydrogen emission spectrum? Why is the Bohr model fundamentally incorrect?arrow_forwardOne bit of evidence that the quantum mechanical model is correct lies in the magnetic properties of matter. Atoms with unpaired electrons are attracted by magnetic fields and thus are said to exhibit pararamagnetism. The degree to which this effect is observed is directly related to the number of unpaired electrons present in the atom. Consider the ground-state electron configurations for Li, N, Ni, Te, Ba, and Hg. Which of these atoms would be expected to be paramagnetic, and how many unpaired electrons are present in each paramagnetic atom?arrow_forward
- Explain electron from a quantum mechanical perspective, including a discussion of atomic radii, probabilities, and orbitals.arrow_forwardAssign a correct set of four quantum numbers for (a) Each electron in a nitrogen atom. (b) The valence electron in a sodium atom. (c) A 3d electron in a nickel atom.arrow_forwardGiven the following energy level diagram for an atom that contains an electron in the n = 3 level, answer the following questions. a Which transition of the electron will emit light of the lowest frequency? b Using only those levels depicted in the diagram, which transition of the electron would require the highest-frequency light? c If the transition from the n = 3 level to the n = 1 level emits green light, what color light is absorbed when an electron makes the transition from the n = 1 to n = 3 level?arrow_forward
- Planck originated the idea that energies can be quantized. What does the term quantized mean? What was Planck trying to explain when he was led to the concept of quantization of energy? Give the formula he arrived at and explain each of the terms in the formula.arrow_forwardhe “Chemistry in Focus" segment Light as a Sex Attractant discusses fluorescence. In fluorescence, ultraviolet radiation is absorbed and intense white visible light is emitted. Is ultraviolet radiation a higher or a lower energy radiation than visible light?arrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning