Concept explainers
(a)
Interpretation:
The reason as to why the first ionization energy of potassium is less than that of sodium is to be stated.
Concept introduction:
Ionization energy is defined as the minimum amount of energy that is required to completely remove an electron from an atom or ion in its gaseous state. It is calculated by subtracting the energy of the neutral atom from the energy of the ion formed.
(b)
Interpretation:
The reason as to why the first ionization energy of chlorine is greater than that of sulfur is to be stated.
Concept introduction:
Ionization energy is defined as the minimum amount of energy that is required to completely remove an electron from an atom or ion in its gaseous state. It is calculated by subtracting the energy of the neutral atom from the energy of the ion formed.
Trending nowThis is a popular solution!
Chapter 11 Solutions
Introductory Chemistry: An Active Learning Approach
- Q2. This question is about the periodicity of the Period 3 elements. (a) State and explain the general trend in first ionisation energy across Period 3. Give one example of an element which deviates from the general trend in first (b) ionisation energy across Period 3. Explain why this deviation occurs. Page 3 of 12 (c) The table shows successive ionisation energies of an element Y in Period 3. lonisation number 1 2 3 4 5 6 7 8 lonisation energy kJ mol- 1000 2260 3390 4540 6990 8490 27 100 31 700 Identify element Y Explain your answer using data from the table. (d) Identify the Period 3 element that has the highest melting point. Explain your answer by reference to structure and bonding.arrow_forwardBoron, atomic number 5, occurs naturally as two isotopes, 10B and 11B, with natural abundances of 19.9% and 80.1%, respectively. (a) In what ways do the two isotopes differ from each other? Does the electronic configuration of 10B differ from that of 11B? (b) Draw the orbital diagram for an atom of 11B. Which electrons are the valence electrons? (c) Indicate three ways in which the 1s electrons in boron differ from its 2s electrons. (d) Elemental boron reacts with fluorine to form BF3, a gas. Write a balanced chemical equation for the reaction of solid boron with fluorine gas. (e) ΔHf° for BF3(g) is -1135.6 kj/mol. Calculate the standard enthalpy change in the reaction of boron with fluorine. (f) Will the mass percentage of F be the same in 10BF3 and 11BF3? If not, why is that the case?arrow_forwardIn the table below, I1 – I6 represent first 6 ionization energies of a certain element. All units are kJ/mol. I1 I2 I3 I4 I5 I6 738 1450 7730 10500 13600 18000 This element is in the 3rd row of the periodic table, the row starting with Na. Identify the element, and explain your reasoning, based on the data in the above table.arrow_forward
- Write the set of four quantum numbers for: (a) the fifth electron in Boron. (b) the electron gained when N atom becomes N- ion. (c) the electron lost when Na atom becomes Na+ ion.arrow_forwardGive the shell electron configuration for the following. (For example, the shell electron configuration of lithium is written 2,1.) (a) argon (b) magnesiumarrow_forwardchoose three . What are the characteristerses of a metal like element? (a) they try to get additional electrons (b) they are melleable. (c) they are lightly to give away or share electrons. (d) they are good conductors of electricityarrow_forward
- ( a ) Eva l u a te t h e expre s s i o n s 2 * 1, 2 * 11 + 32,2 * 11 + 3 + 52, and 2 * 11 + 3 + 5 + 72. (b) How do the atomic numbers of the noble gases relate to the numbersfrom part (a)? (c) What topic discussed in Chapter 6 is thesource of the number “2” in the expressions in part (a)?arrow_forwardBoron, atomic number 5, occurs naturally as two isotopes, 10B and 11B, with natural abundances of 19.9% and 80.1%, respectively.(a) In what ways do the two isotopes differ from each other? Does the electronic configuration of 10B differ from that of 11B? (b) Drawthe orbital diagram for an atom of 11B. Which electrons are the valence electrons? (c) Indicate three ways in which the 1s electrons inboron differ from its 2s electrons. (d) Elemental boron reacts with fluorine to form BF3, a gas. Write a balanced chemical equation forthe reaction of solid boron with fluorine gas. (e) ΔHf° for BF31g2 is -1135.6 kJ>mol. Calculate the standard enthalpy change in thereaction of boron with fluorine. (f) Will the mass percentage of F be the same in 10BF3 and 11BF3? If not, why is that the case?arrow_forwardA neutral atom of an element has two electrons with n=1,eight electrons with n=2,eight electrons with n=3 and one electron with n=4 and has mass number of 39.Deducw the following from the above information. (I) the atomic number of the element (ii) the number of neutrons in the nucleus (iii) total number of s electrons (iv) total number of p electrons (v) the group the element belongs toarrow_forward
- Q1. This question is about atomic structure. (a) Write the full electron configuration for each of the following species. CH Fe2+ (b) Write an equation, including state symbols, to represent the process that occurs when the third ionisation energy of manganese is measured. (c) State which of the elements magnesium and aluminium has the lower first ionisation energy Explain your answer. (d) A sample of nickel was analysed in a time of flight (TOF) mass spectrometer. The sample was ionised by electron impact ionisation. The spectrum produced showed three peaks with abundances as set out in the table. m/z Abundance /% 58 61.0 60 29.1 61 9.9 Give the symbol, including mass number, of the ion that would reach the detector first in the sample. Calculate the relative atomic mass of the nickel in the sample. Give your answer to one decimal place. Page 2 of 12 Symbol of ion Relative atomic massarrow_forward(c) Silicon (Si) is the most common chemical element in today's semiconductor industry. It has an atomic number of 14 and belongs to the Group IV (4) of the periodic table with its most common isotope being Si-29. (i) (ii) (iii) Explain what an isotope is. How many protons and how many neutrons are in the nucleus of this Silicon isotope? What is the electron configuration of Si?arrow_forward(a) Rank elements: Na, Mg, Al, and K, in increasing order of: (i) atomic size; (ii) ionization energy, and (iii) reactivity. (b) Explain why atomic size decreases from left to right, but increases from top to bottom; (c) Explain why ionization energy increases from left to right, but decreases from top to bottom; (d) Explain why the reactivity of alkali metals (Group-1) increases from top to bottom, where as the reactivity of halogen (Group-17) decreases from top to bottom.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning