Experimental Organic Chemistry: A Miniscale & Microscale Approach (Cengage Learning Laboratory Series for Organic Chemistry)
Experimental Organic Chemistry: A Miniscale & Microscale Approach (Cengage Learning Laboratory Series for Organic Chemistry)
6th Edition
ISBN: 9781305080461
Author: John C. Gilbert, Stephen F. Martin
Publisher: Brooks Cole
Question
Book Icon
Chapter 10.7, Problem 10E

(a)

Interpretation Introduction

Interpretation: Absorption associated with the carbon-carbon double bond in the IR spectrum of norbornene should be identified.

Concept introduction:The IR spectrum of compound helps to detect the presence of the functional group in molecule. The functional groups that are present in compound absorb certain IR radiation at a characteristic wavelength or wavenumber. For example, the carbonyl group present in compound shows a characteristic peak around 1700 cm1 in the IR spectrum.

(b)

Interpretation Introduction

Interpretation: The various resonances corresponding to 1H NMR of hydrogen nuclei found in norborneneshould be assigned.

Concept introduction:The scale used for the NMR spectrum is delta scale. δ denotes parts per million units. The lower values of δ denote upfield while higher values of δ denote downfield region. Each peak in the NMR spectrum corresponds to distinct hydrogen.

The area within each peak corresponds to the number of equivalent protons found at that chemical shift values.

Spin-spin splitting is observed as a result of the interaction amongst non-equivalent NMR active nuclei. This is independent of the strength of the external magnetic field. The formula to calculate the number of peaks in the 1H NMR spectra is as follows:

  Number of peaks=N+1

Where,

  • N is the number of equivalent protons on the adjacent carbon atoms.

Thus if a fragment is CH2CH3 then it would show a three proton triplet due to CH3 and a two proton quartet in accordance with N+1 the rule.

(c)

Interpretation Introduction

Interpretation:Various resonances to the carbon nuclei should be assigned and appearances of four resonances in 13C the NMR spectrum of norbornene should be explained.

Concept introduction: The scale used for the 13C NMR spectrum is delta scale with the only difference as that the chemical shift values are much larger. The range lies from δ 0250 denotes parts per million units. The lower values of δ denote upfield while higher values of δ denote downfield region. Each peak in the NMR spectrum corresponds to a distinct carbon.

Thus if a fragment is CH2CH3 then it would show two carbon signals for each of theses carbon.

Blurred answer
Students have asked these similar questions
3. 'H-NMR interpretation When dissolved in CDC13, phenacetin shows 6 signals. All of the peaks are sharp, except for the signal f not below. Draw the chemical structure of phenacetin, labeling each hydrogen with an alphabetical letter. Make a larger version of the chart below (half or full page), and complete it with the missing information. Explanation of splitting patter 8 (ppm) Letter # H (integration Splitting pattern value) 7.94 f 1 Broad singlet 7.36 e 6.80 d 3.98 с 2.09 b 1.38 a Extra Credit Question 4. Describe/predict how the 'H-NMR spectrum differs for acetaminophen.
What can be said about the selectivity of the UV-Vis spectroscopy? a. UV Vis spectroscopy is highly selective for the benzene b. UV-Vis has high selectivity c. Compounds in complex mixtures are separated well d. Selectivity for the compounds absorbing at visible wavelengths is high e. UV-Vis is selective towards saturated hydrocarbons
1. Summarize the essential properties of nucleophilic acyl substitution. 2. Select one carboxylic acid that can be used in clinical diagnostic testing, nutritional research, or pharmacological studies. Give an explanation as to how the molecular property influences the bulk property of the carboxylic acid.

Chapter 10 Solutions

Experimental Organic Chemistry: A Miniscale & Microscale Approach (Cengage Learning Laboratory Series for Organic Chemistry)

Ch. 10.2 - Prob. 11ECh. 10.2 - Prob. 12ECh. 10.2 - Prob. 13ECh. 10.2 - Prob. 14ECh. 10.2 - Prob. 15ECh. 10.2 - Prob. 16ECh. 10.2 - Prob. 17ECh. 10.3 - Prob. 1ECh. 10.3 - Prob. 2ECh. 10.3 - Prob. 3ECh. 10.3 - Prob. 4ECh. 10.3 - Prob. 5ECh. 10.3 - Prob. 6ECh. 10.3 - Prob. 7ECh. 10.3 - Prob. 8ECh. 10.3 - Prob. 9ECh. 10.3 - Prob. 10ECh. 10.3 - Prob. 11ECh. 10.3 - Prob. 12ECh. 10.3 - Prob. 13ECh. 10.3 - Prob. 14ECh. 10.3 - Prob. 15ECh. 10.3 - Prob. 16ECh. 10.3 - Prob. 17ECh. 10.3 - Prob. 18ECh. 10.3 - Prob. 19ECh. 10.3 - Prob. 20ECh. 10.3 - Prob. 21ECh. 10.3 - Prob. 22ECh. 10.3 - Prob. 23ECh. 10.3 - Prob. 24ECh. 10.3 - Prob. 25ECh. 10.3 - Prob. 26ECh. 10.3 - Prob. 27ECh. 10.3 - Prob. 28ECh. 10.3 - Prob. 29ECh. 10.3 - Prob. 30ECh. 10.3 - Prob. 31ECh. 10.3 - Prob. 32ECh. 10.5 - Prob. 1ECh. 10.5 - Prob. 2ECh. 10.5 - Prob. 3ECh. 10.5 - Prob. 4ECh. 10.5 - Prob. 5ECh. 10.5 - Prob. 6ECh. 10.5 - Prob. 7ECh. 10.5 - Prob. 8ECh. 10.5 - Prob. 9ECh. 10.5 - Prob. 10ECh. 10.5 - Prob. 11ECh. 10.5 - Prob. 12ECh. 10.5 - Prob. 14ECh. 10.5 - Prob. 15ECh. 10.5 - Prob. 16ECh. 10.5 - Prob. 17ECh. 10.5 - Prob. 18ECh. 10.5 - Prob. 19ECh. 10.5 - Prob. 20ECh. 10.5 - Prob. 23ECh. 10.6 - Prob. 1ECh. 10.6 - Prob. 2ECh. 10.6 - Prob. 3ECh. 10.6 - Prob. 4ECh. 10.6 - Prob. 5ECh. 10.6 - Prob. 6ECh. 10.6 - Prob. 7ECh. 10.6 - Prob. 8ECh. 10.6 - Prob. 9ECh. 10.6 - Prob. 10ECh. 10.6 - Prob. 11ECh. 10.6 - Prob. 12ECh. 10.6 - Prob. 13ECh. 10.6 - Prob. 14ECh. 10.6 - Prob. 15ECh. 10.6 - Prob. 16ECh. 10.6 - Prob. 17ECh. 10.6 - Prob. 18ECh. 10.6 - Prob. 20ECh. 10.6 - Prob. 21ECh. 10.6 - Prob. 22ECh. 10.6 - Prob. 23ECh. 10.6 - Prob. 24ECh. 10.6 - Prob. 25ECh. 10.6 - Prob. 26ECh. 10.6 - Prob. 28ECh. 10.6 - Prob. 29ECh. 10.6 - Prob. 30ECh. 10.7 - Prob. 1ECh. 10.7 - Prob. 2ECh. 10.7 - Prob. 3ECh. 10.7 - Prob. 4ECh. 10.7 - Prob. 5ECh. 10.7 - Prob. 6ECh. 10.7 - Prob. 7ECh. 10.7 - Prob. 8ECh. 10.7 - Prob. 9ECh. 10.7 - Prob. 10ECh. 10.7 - Prob. 11ECh. 10.7 - Prob. 12ECh. 10.8 - Prob. 1ECh. 10.8 - Prob. 2ECh. 10.8 - Prob. 4ECh. 10.8 - Prob. 5ECh. 10.8 - Prob. 6ECh. 10.8 - Prob. 7ECh. 10.8 - Prob. 8ECh. 10.8 - Prob. 9ECh. 10.8 - Prob. 10ECh. 10.8 - Prob. 11ECh. 10.8 - Prob. 12ECh. 10.8 - Prob. 13ECh. 10.8 - Prob. 14ECh. 10.8 - Prob. 15E
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
EBK A SMALL SCALE APPROACH TO ORGANIC L
Chemistry
ISBN:9781305446021
Author:Lampman
Publisher:CENGAGE LEARNING - CONSIGNMENT