Organic Chemistry: Principles and Mechanisms (Second Edition)
2nd Edition
ISBN: 9780393663556
Author: Joel Karty
Publisher: W. W. Norton & Company
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 1.58P
Interpretation Introduction
Interpretation:
All resonance structures of the given pair of structurally similar ionic species are to be drawn and the more stable of the two is to be determined.
Concept introduction:
Resonance leads to stabilization of a compound. More the number of resonance structures, higher the stability of the compound.
Lower the number of atoms with formal charges in the resonance structure of a species, the more stable it is.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider compounds A–D, which contain both a heteroatom and a double bond.
(a) For which compounds are no additional Lewis structures possible?
(b) When two or more Lewis structures can be drawn, draw all additional resonance structures.
Consider Lewis formulas A, B, and C:(a) Are A, B, and C constitutional isomers, or are they resonance contributors? (b) Which have a negatively charged carbon? (c) Which have a positively charged carbon? (d) Which have a positively charged nitrogen? (e) Which have a negatively charged nitrogen? (f) What is the net charge on each? (g) Which is a more stable structure, A or B? Why? (h) Which is a more stable structure, B or C? Why? (i) What is the CNN geometry in each according to VSEPR?
Draw all resonance contributors for each of the following molecules or ions. Be sure to include the curved arrows thatindicate which pairs of electrons are shifted in going from one resonance structure to the next.(a) CH3NO2(b) CH3CO-2(c) CH3CHCHCH-2(the ion has two C-C single bonds)(d) C5H5N (a ring is formed by the C and N atoms, and each H is bonded to C)(e) C4H5N (a ring is formed by the C and N atoms, the N is bonded to one H, and each C is bonded to one H)
Chapter 1 Solutions
Organic Chemistry: Principles and Mechanisms (Second Edition)
Ch. 1 - Prob. 1.1PCh. 1 - Prob. 1.2PCh. 1 - Prob. 1.3PCh. 1 - Prob. 1.4PCh. 1 - Prob. 1.5PCh. 1 - Prob. 1.6PCh. 1 - Prob. 1.7PCh. 1 - Prob. 1.8PCh. 1 - Prob. 1.9PCh. 1 - Prob. 1.10P
Ch. 1 - Prob. 1.11PCh. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - Prob. 1.15PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Prob. 1.35PCh. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - Prob. 1.40PCh. 1 - Prob. 1.41PCh. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. 1.49PCh. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - Prob. 1.52PCh. 1 - Prob. 1.53PCh. 1 - Prob. 1.54PCh. 1 - Prob. 1.55PCh. 1 - Prob. 1.56PCh. 1 - Prob. 1.57PCh. 1 - Prob. 1.58PCh. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - Prob. 1.62PCh. 1 - Prob. 1.63PCh. 1 - Prob. 1.64PCh. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - Prob. 1.72PCh. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Prob. 1.75PCh. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - Prob. 1.78PCh. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - Prob. 1.82PCh. 1 - Prob. 1.1YTCh. 1 - Prob. 1.2YTCh. 1 - Prob. 1.3YTCh. 1 - Prob. 1.4YTCh. 1 - Prob. 1.5YTCh. 1 - Prob. 1.6YTCh. 1 - Prob. 1.7YTCh. 1 - Prob. 1.8YTCh. 1 - Prob. 1.9YTCh. 1 - Prob. 1.10YTCh. 1 - Prob. 1.11YTCh. 1 - Prob. 1.12YTCh. 1 - Prob. 1.13YTCh. 1 - Prob. 1.14YTCh. 1 - Prob. 1.15YTCh. 1 - Prob. 1.16YTCh. 1 - Prob. 1.17YT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Draw all resonance contributors for each of the following molecules or ions. Be sure to include the curved arrows that indicate which pairs of electrons are shifted in going from one resonance structure to the next. (a) CH3NO2 (b) CH, CO, (c) CH CHCHCH2 (the ion has two C-C single bonds) (d) C5H5N (a ring is formed by the C and N atoms, and each H is bonded to a C atom) (e) C4H5N (a ring is formed by the C and N atoms, and the N is bonded to one H atom, and each C atom is bonded to one H atom)arrow_forwardCompare with explanation the acidity of the following pairs of compounds. (Note: You must draw the appropriate resonance structures to support your answers.) (c) (i) .COOH .COOH H3COarrow_forwardThe curved arrow notation introduced in Section 1.6B is a powerful method used by organic chemists to show the movement of electrons not only in resonance structures, but also in chemical reactions.Because each curved arrow shows the movement of two electrons, following the curved arrows illustrates what bonds are broken and formed in a reaction. Consider the following three-step process. (a) Add curved arrows in Step [1] to show the movement of electrons. (b) Use the curved arrows drawn in Step [2] to identify the structure of X. X is converted in Step [3] to phenol and HCl.arrow_forward
- Consider compounds A–D, which contain both a heteroatom and a double bond. (a) For which compounds are no additional Lewis structures possible? (b) When two or more Lewis structures can be drawn, draw all additional resonance structures.arrow_forward4. (i) On the structure below, add all missing lone pairs of electrons, assuming that all of the formal charges are correct. (ii) Draw line-angle structures for all resonance forms (including minor, but still significant) using appropriate notation, including double-headed resonance arrows and curved arrows for electrons. (Hint: Draw two more) (iii) Rank the three structures from most =1 to least =3 important.arrow_forwardFor each of the following structures,1. Draw a Lewis structure; fill in any nonbonding electrons.2. Calculate the formal charge on each atom other than hydrogen.(a) CH3NO(nitromethane)(b) (CH3)3NO(trimethylamine oxide)(c) [N3]-(azide ion)(d) [(CH3)3O]+ (e) CH3NC (f) (CH3)4NBrarrow_forward
- The curved arrow notation introduced in Section 1.6B is a powerfulmethod used by organic chemists to show the movement of electronsnot only in resonance structures, but also in chemical reactions.Because each curved arrow shows the movement of two electrons,following the curved arrows illustrates what bonds are broken andformed in a reaction. Consider the following three-step process. (a) Addcurved arrows in Step [1] to show the movement of electrons. (b) Use thecurved arrows drawn in Step [2] to identify the structure of X. X isconverted in Step [3] to phenol and HCl.arrow_forward(a) Draw the major resonance forms of each of these ions. Pcaetre gol2 (b) Circle the most stable of the two ions in part a.arrow_forward16. Draw significant resonance structures for the following compound. Which of this is/are most significant resonance structure(s)? Explain why. (a) مهم (b) the H H- (c)arrow_forward
- The curved arrow notation introduced in Section 1.6 is a powerful method used by organic chemists to show the movement of electrons not only in resonance structures, but also in chemical reactions. Since each curved arrow shows the movement of two electrons, following the curved arrows illustrates what bonds are broken and formed in a reaction. Consider the following three-step process. (a) Add curved arrows in Step [1] to show the movement of electrons. (b) Use the curved arrows drawn in Step [2] to identify the structure of X. X is converted in Step [3] to phenol and HCl.arrow_forwardThe curved arrow notation introduced in Section 1.6 is a powerful method used by organic chemists to show the movement of electrons not only in resonance structures, but also in chemical reactions. Since each curved arrow shows the movement of two electrons, following the curved arrows illustrates what bonds are broken and formed in a reaction. Consider the following three-step process. (a) Add curved arrows in Step [1] to show the movement of electrons. (b) Use the curved arrows drawn in Step [2] to identify the structure of X. X is converted in Step [3] to phenol and HCl.arrow_forwardDraw a structural formula for a hydrocarbon with the given molecular formula that undergoes hydroboration-oxidation to give the indicated product. (a) (b) • All hydrogen atoms are implied. Apply formal charges where appropriate. • Omit lone pairs and radical electrons from your answer. ● C₂H10 C₂H12 1. (sia) BH 2. H₂O₂, NaOH MAVIL / 1. BHs 2. H₂O₂, NaOH Η OO Sn [F ? ChemDoodle OH Sn [F ? Previous Nextarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY