
Concept explainers
(a)
Interpretation:
Lewis structure for the
Concept introduction:
Lewis structure is a convenient way to convey information such as which atoms are bonded to each other by which type of bond. Only valence electrons take part to draw Lewis structure.
Valence electrons that participate in bond formation are called bonding electron pairs whereas electrons that do not take part in bonding and that remain as non-bonding electrons are termed as lone pair of electrons.
Lewis structure is drawn from the total valence electron count of each atom in the molecule. Skeleton structure for the given molecule is drawn with atoms bonded with a single bond, the central atom is always less electronegative atom. Electrons that participate in forming the bond are bonding electrons. Remaining electrons are distributed first to outer atoms such that each atom completes its octet other than hydrogen.

Answer to Problem 1.44P
Lewis structure for
Explanation of Solution
The given molecule
Thus the skeleton structure for
Remaining two valence electrons are contributed as lone pair of electrons to the outer atom which is nitrogen.
Hence the complete Lewis structure for
Lewis structure for
(b)
Interpretation:
Lewis structure for
Concept introduction:
Lewis structure is drawn from the total valence electron count of each atom in the molecule. Skeleton structure for the given molecule is drawn with atoms bonded with a single bond, the central atom is always less electronegative atom. Electrons that participate in forming the bond are bonding electrons. Remaining electrons are distributed first to outer atoms such that each atom complete its octet other than hydrogen.

Answer to Problem 1.44P
Lewis structure for
Explanation of Solution
In
Remaining
Lewis structure for
(c)
Interpretation:
Lewis structure for
Concept introduction:
Lewis structure is drawn from the total valence electron count of each atom in the molecule. Valence electrons participate in bond formation are called bonding electron pairs whereas electrons that do not take part in bonding and that remain as non-bonding electrons are termed as lone pair of electrons. Skeleton structure for the given molecule is drawn with atoms bonded with a single bond, the central atom is always less electronegative atom.
Lone pair of electrons contributed to outer atoms to complete octet except hydrogen.

Answer to Problem 1.44P
The Lewis structure for
Explanation of Solution
Carbon is the central atom in
Remaining six electrons are contributed as lone pairs to the outer atom oxygen but one electron is involved in bonding with complete octet of oxygen atom.
Lewis structure is drawn from the total valence electron count.
(d)
Interpretation:
Lewis structure for
Concept introduction:
Lewis structure is drawn from the total valence electron count of each atom in the molecule. Skeleton structure for the given molecule is drawn with atoms bonded with a single bond, the central atom is always less electronegative atom. Electrons that participate in forming the bond are bonding electrons. Remaining electrons are distributed first to outer atoms such that each atom completes its octet other than hydrogen.

Answer to Problem 1.44P
Lewis structure for
Explanation of Solution
In
Eight electrons from total
Therefore the Lewis structure for
Lewis structure is drawn from total valence electron count.
(e)
Interpretation:
Lewis structure for
Concept introduction:
Lewis structure is drawn from the total valence electron count of each atom in the molecule. Valence electrons that participate in bond formation are called bonding electron pairs whereas electrons that do not take part in bonding and that remain as non-bonding electrons are termed as lone pair of electrons. Skeleton structure for the given molecule is drawn with atoms bonded with a single bond, the central atom is always less electronegative atom.
Lone pair of electrons contributed to outer atoms to complete octet except hydrogen.

Answer to Problem 1.44P
Lewis structure for
Explanation of Solution
The given molecule
Remaining
Hence the Lewis structure for
Lewis structure is drawn from total valence electron count.
Want to see more full solutions like this?
Chapter 1 Solutions
Organic Chemistry: Principles and Mechanisms (Second Edition)
- K Most Reactive Na (3 pts) Can the metal activity series (shown on the right) or a standard reduction potential table explain why potassium metal can be prepared from the reaction of molten KCI and Na metal but sodium metal is not prepared from the reaction of molten NaCl and K metal? Show how (not). Ca Mg Al с Zn Fe Sn Pb H Cu Ag Au Least Reactivearrow_forward(2 pts) Why is O2 more stable as a diatomic molecule than S2?arrow_forwardDraw the Lewis structure for the polyatomic phosphite (PO¾³¯) a anion. Be sure to include all resonance structures that satisfy the octet rule. C I A [ ]¯arrow_forward
- Decide whether these proposed Lewis structures are reasonable. proposed Lewis structure Is the proposed Lewis structure reasonable? Yes. :0: Cl C C1: 0=0: : 0 : : 0 : H C N No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* ☐ Yes. No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* Yes. ☐ No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | * If two or more atoms of the same element don't satisfy the octet rule, just enter the chemical symbol as many times as necessary. For example, if two oxygen atoms don't satisfy the octet rule, enter "0,0".arrow_forwardDraw the Lewis structure for the polyatomic trisulfide anion. Be sure to include all resonance structures that satisfy the octet rule. с [ ] - Garrow_forward1. Calculate the accurate monoisotopic mass (using all 1H, 12C, 14N, 160 and 35CI) for your product using the table in your lab manual. Don't include the Cl, since you should only have [M+H]*. Compare this to the value you see on the LC-MS printout. How much different are they? 2. There are four isotopic peaks for the [M+H]* ion at m/z 240, 241, 242 and 243. For one point of extra credit, explain what each of these is and why they are present. 3. There is a fragment ion at m/z 184. For one point of extra credit, identify this fragment and confirm by calculating the accurate monoisotopic mass. 4. The UV spectrum is also at the bottom of your printout. For one point of extra credit, look up the UV spectrum of bupropion on Google Images and compare to your spectrum. Do they match? Cite your source. 5. For most of you, there will be a second chromatographic peak whose m/z is 74 (to a round number). For one point of extra credit, see if you can identify this molecule as well and confirm by…arrow_forward
- Please draw, not just describe!arrow_forwardcan you draw each step on a piece of a paper please this is very confusing to mearrow_forward> Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? esc ? A O O •If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. olo 18 Ar Explanation Check BB Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Accessibilityarrow_forward
- Name the structurearrow_forward> For each pair of substrates below, choose the one that will react faster in a substitution reaction, assuming that: 1. the rate of substitution doesn't depend on nucleophile concentration and 2. the products are a roughly 50/50 mixture of enantiomers. Substrate A Substrate B Faster Rate X CI (Choose one) (Choose one) CI Br Explanation Check Br (Choose one) C 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy A F10arrow_forwardHow to draw this mechanism for the foloowing reaction in the foto. thank youarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
