Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.13P
What is the thickness required of a masonry wall havingthermal conductivity
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problems
within the wall is T(x) = a(L- ) +b where
a = 10°C/m2 and b 30°C, what is the thermal con-
ductivity of the wall? What is the value of the convec-
tion heat transfer coefficient, h?
2.11 Consider steady-state conditions for one-dimensional
conduction in a plane wall having a thermal conductiv-
ity k 50 W/m K and a thickness L = 0.25 m, with no
internal heat generation.
2.
T2
T1
L
Determine the heat flux and the unknown quantity for
each case and sketch the temperature distribution, indi-
cating the direction of the heat flux.
2
Case
TC)
dTldx (K/m)
T2(°C)
1
50
-20
2
-30
- 10
3
70
160
4
40
-80
5
30
200
Consider a large plane wali of thickness L03 m thermal conductivity k25 /m K, end surfece aree A 12 m The left side of the well ot x=O is subjected to a net heat flux of go760
W/m while the temperature at that surfece is measured to be T 80°C
Assuming constant thermal conductivity and no heat generation in the wall, ovaluate the temperature of the right surface of the wall at xEL
The temperature of the right surfaoe of the wall at x Lis
h = 11 W/m R (Uutslut
Consider steady-state heat conduction through a cylindrical wall T
The fluid on the inside.
at 590 K with a heat transfer coefficiect of 23 W/m“ K. The temperature on the outsida
surface of the wall is known and maintained at 420 K. The heat flow rate through the cylind-ie.
Wall is 200 W per 1 m length of the cylinder. If the wall has a thermal conductivity of 0.17
K. what are the inside and outside radii of the cylindrical wall? The ratio of the outside radiue
inside radius is 2.
Calculate the net heat flow by radiation to the fumace all at 530 K from the fumace
(3)
floor at 810 K. Both surfaces can be considered to be black radiators.
::!...:
AT
1 1....
3.7
の-
Ta-
Chapter 1 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 1 - The thermal conductivity of a sheet of rigid,...Ch. 1 - The heat flux that is applied to the left face of...Ch. 1 - A concrete wall, which has a surface area of 20m2...Ch. 1 - The concrete slab of a basement is 11 in long. 8...Ch. 1 - Consider Figure 1.3. The heat flux in the...Ch. 1 - The heal flux through a wood slab 50 mm thick,...Ch. 1 - The inner and outer surface temperatures of a...Ch. 1 - A thermodynamic analysis of a proposed Brayton...Ch. 1 - A glass window of width W=1m and height H=2m is 5...Ch. 1 - A freezer compartment consists of a cubical cavity...
Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - An inexpensive food and beverage container is...Ch. 1 - What is the thickness required of a masonry wall...Ch. 1 - A wall is made from an inhomogeneous...Ch. 1 - The 5-mm-thick bottom of a 200-mm-diameter panmay...Ch. 1 - A square silicon chip (k=150W/mK) is of width...Ch. 1 - For a boiling process such as shown in Figure 1.5...Ch. 1 - You’ve experienced convection cooling if you’ve...Ch. 1 - Air at 40°C flows over a long, 25-mm-diameter...Ch. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - The free convection heat transfer coefficient on a...Ch. 1 - A transmission case measures W=0.30m on a sideand...Ch. 1 - A cartridge electrical heater is shaped as a...Ch. 1 - A common procedure for measuring the velocity of...Ch. 1 - A square isothermal chip is of width w=5mm on...Ch. 1 - The temperature controller for a clothes dryer...Ch. 1 - An overhead 25-m-long, uninsulated industrial...Ch. 1 - Under conditions for which the same room...Ch. 1 - A spherical interplanetary probe of 0.5-m diameter...Ch. 1 - An instrumentation package has a spherical outer...Ch. 1 - Consider the conditions of Problem 1.22. However,...Ch. 1 - If TsTsur in Equation 1.9, the radiation heat...Ch. 1 - A vacuum system, as used ¡n sputtering...Ch. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water (pin=10bar,Tin=110C) enters...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold-...Ch. 1 - Chips of width L=15mm on a side are mounted to...Ch. 1 - Consider the transmission case of Problem 1...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - Prob. 1.48PCh. 1 - Liquid oxygen, which has a boiling into of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step ¡n semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace tor processing semiconductor materials...Ch. 1 - Prob. 1.58PCh. 1 - Consider the wind turbine of Example 1.3. To...Ch. 1 - Consider the conducting rod of Example 1.4...Ch. 1 - A long bus bar (cylindrical rod used for making...Ch. 1 - A 50mm45mm20mm cell phone chargerhas a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - A freezer compartment is covered with a...Ch. 1 - A vertical slab of Wood’s metal is joined to a...Ch. 1 - A photovoltaic panel of dimension 2m4m isinstalled...Ch. 1 - Following the hot vacuum forming of a...Ch. 1 - Prob. 1.69PCh. 1 - A computer consists of an array of five printed...Ch. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Consider the conditions of Problem 1.22,but the...Ch. 1 - Most of the energy we consume as food ¡s converted...Ch. 1 - Prob. 1.75PCh. 1 - The wall of an oven used to cure plastic parts is...Ch. 1 - An experiment to determine the convection...Ch. 1 - A thin electrical heating element provides a...Ch. 1 - A rectangular forced air healing duct is suspended...Ch. 1 - Consider the steam pipe of Example 1.2. The...Ch. 1 - During its manufacture, plate glass at 600°C is...Ch. 1 - The curing press of Example 1.9 involves exposure...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Prob. 1.84PCh. 1 - A solar flux of 700W/m2K is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.37 Mild steel nails were driven through a solid wood wall consisting of two layers, each 2.5-cm thick, for reinforcement. If the total cross-sectional area of the nails is 0.5% of the wall area, determine the unit thermal conductance of the composite wall and the percent of the total heat flow that passes through the nails when the temperature difference across the wall is 25°C. Neglect contact resistance between the wood layers.arrow_forward1.10 A heat flux meter at the outer (cold) wall of a concrete building indicates that the heat loss through a wall of 10-cm thickness is . If a thermocouple at the inner surface of the wall indicates a temperature of 22°C while another at the outer surface shows 6°C, calculate the thermal conductivity of the concrete and compare your result with the value in Appendix 2, Table 11.arrow_forwardOne end of a 0.3-m-long steel rod is connected to a wall at 204C. The other end is connected to a wall that is maintained at 93C. Air is blown across the rod so that a heat transfer coefficient of 17W/m2 K is maintained over the entire surface. If the diameter of the rod is 5 cm and the temperature of the air is 38C, what is the net rate of heat loss to the air?arrow_forward
- 2.29 In a cylindrical fuel rod of a nuclear reactor, heat is generated internally according to the equation where = local rate of heat generation per unit volume at r = outside radius = rate of heat generation per unit volume at the centerline Calculate the temperature drop from the centerline to the surface for a 2.5-cm-diameter rod having a thermal conductivity of if the rate of heat removal from its surface is 1.6 .arrow_forwardA high-speed computer is located in a temperature-controlled room at 26C. When the machine is operating, its internal heat generation rate is estimated to be 800 W. The external surface temperature of the computer is to be maintained below 85C. The heat transfer coefficient for the surface of the computer is estimated to be 10W/m2K. What surface area would be necessary to assure safe operation of this machine? Comment on ways to reduce this area.arrow_forwardEstimate the rate of heat loss per unit length from a 5-cm ID, 6-cm OD steel pipe covered with high-temperature insulation having a thermal conductivity of 0.11 W/(m K) and a thickness of 1.2 cm. Steam flows in the pipe. It has a quality of 99% and is at 150C. The unit thermal resistance at the inner wall is 0.0026(m2K)/W the heat transfer coefficient at the outer surface is 17W/(m2K) and the ambient temperature is 16C.arrow_forward
- 2.30 An electrical heater capable of generating 10,000 W is to be designed. The heating element is to be a stainless steel wire having an electrical resistivity of ohm-centimeter. The operating temperature of the stainless steel is to be no more than 1260°C. The heat transfer coefficient at the outer surface is expected to be no less than in a medium whose maximum temperature is 93°C. A transformer capable of delivering current at 9 and 12 V is available. Determine a suitable size for the wire, the current required, and discuss what effect a reduction in the heat transfer coefficient would have. (Hint: Demonstrate first that the temperature drop between the center and the surface of the wire is independent of the wire diameter, and determine its value.)arrow_forwardAn electronic device that internally generates 600 mW of heat has a maximum permissible operating temperature of 70C. It is to be cooled in 25C air by attaching aluminum fins with a total surface area of 12cm2. The convection heat transfer coefficient between the fins and the air is 20W/m2K. Estimate the operating temperature when the fins are attached in such a way that (a) there is a contact resistance of approximately 50 K/W between the surface of the device and the fin array and (b) there is no contact resistance (in this case, the construction of the device is more expensive). Comment on the design options.arrow_forward3.17 A 1.4-kg aluminum household iron has a 500-W heating element. The surface area is . The ambient temperature is 21°C, and the surface heat transfer coefficient is . How long after the iron is plugged in does its temperature reach 104°C?arrow_forward
- 1.4 To measure thermal conductivity, two similar 1-cm-thick specimens are placed in the apparatus shown in the accompanying sketch. Electric current is supplied to the guard heater, and a wattmeter shows that the power dissipation is 10 W. Thermocouples attached to the warmer and to the cooler surfaces show temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the material at the mean temperature in W/m K. Problem 1.4arrow_forward2.38 The addition of aluminum fins has been suggested to increase the rate of heat dissipation from one side of an electronic device 1 m wide and 1 m tall. The fins are to be rectangular in cross section, 2.5 cm long and 0.25 cm thick, as shown in the figure. There are to be 100 fins per meter. The convection heat transfer coefficient, both for the wall and the fins, is estimated to be K. With this information determine the percent increase in the rate of heat transfer of the finned wall compared to the bare wall.arrow_forward2.45 Heat is transferred from water to air through a brass wall . The addition of rectangular brass fins, 0.08 cm thick and 2.5 cm long, spaced 1.25 cm apart, is contemplated. Assuming a water-side heat transfer coefficient of and an airside heat transfer coefficient of , compare the gain in heat transfer rate achieved by adding fins to (a) the water side, (b) the air side, and (c) both sides. (Neglect temperature drop through the wall.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license