Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.85P

A solar flux of 700 W/m 2 K is incident on a flat—plate solar collector used to heat water. The area of the collector is 3 m2, and 90% of the solar radiation passes through the cover glass and is absorbed by the absorber plate. The remaining 10% is reflected away from the collector. Water flows through the tube passages on the back side of the absorber Plate and is heated from an inlet temperature T i to an outlet temperature T o . The cover glass, operating at a temperature of 30°C, has an emissivity of 0.94 and experiences radiation exchange with the sky at 10 ° C . The convection coefficient between the cover glass and the ambient air at 25°C is 10 W/m 2 K .
Chapter 1, Problem 1.85P, A solar flux of 700W/m2K is incident on a flat—plate solar collector used to heat water. The area of
(a) Perform an overall energy balance on the collector to obtain an expression for the rate at which useful heat is collected per unit area of the collector, q t e . Determine the value of q t e .
(b) Calculate the temperature rise of the water, T o T i , if the flow rate is 0.01 kg/s. Assume the specific heat of the water to be 4179 J/kg K .
(c) The collector efficiency η is defined as the ratio of the useful heat collected to the rate at which solar energy is incident on the collector. What is the value of η ?

Blurred answer
Students have asked these similar questions
A cylindrical tube has an inner diameter of 2 cm and a wall thickness of 1 cm. The tube is evacuated. In the center, there is a radiation source along its axis that sends 1e^5 W/m^2 to the inner surface of the tube. K for the tube wall is 2 W/m K. If the outer surface of the tube is cooled with water at 298 K with a convective heat transfer coefficient of 100 W/m^2 K, determine the minimum temperature rating for the tube material for safe operation.
A steam turbine receives 70 pounds of steam per minute with an enthalpy of 1,600 Btu per pound and a velocity of 100 ft/sec. Itleaves the turbine at 900 ft/sec and 1,320 Btu/lb enthalpy. The horsepower output is 373 kW. The radiation heat loss in BTU/hr will be?
A flat-plate solar collector, as shown in Fig. 1, is used to heat water by having water flow through tubes attached at the back of the thin solar absorber plate. The absorber plate has an emissivity and an absorptivity of 0.8. The top surface (* = 0) temperature of the absorber is To = 35 °C, and solar radiat ion is incident on the absorber at 600 W/m? with a surrounding temperature of 0 °C. The convection heat transfer coefficient at the absorber surface as 8 W/m?-K. Assuming constant thermal conductivity and no heat generation in the wall, i express the differential equation and the boundary conditions for steady one- dimensional heat conduct ion through the wall, obtain a relation for the variation of temperature in the wall by solving the differential equation, and ii iii. determine the net heat flux, ġo absorbed by the collector ε, α, Τ. Absorber plate Water tubes Insulation Fig. 1

Chapter 1 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - An inexpensive food and beverage container is...Ch. 1 - What is the thickness required of a masonry wall...Ch. 1 - A wall is made from an inhomogeneous...Ch. 1 - The 5-mm-thick bottom of a 200-mm-diameter panmay...Ch. 1 - A square silicon chip (k=150W/mK) is of width...Ch. 1 - For a boiling process such as shown in Figure 1.5...Ch. 1 - You’ve experienced convection cooling if you’ve...Ch. 1 - Air at 40°C flows over a long, 25-mm-diameter...Ch. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - The free convection heat transfer coefficient on a...Ch. 1 - A transmission case measures W=0.30m on a sideand...Ch. 1 - A cartridge electrical heater is shaped as a...Ch. 1 - A common procedure for measuring the velocity of...Ch. 1 - A square isothermal chip is of width w=5mm on...Ch. 1 - The temperature controller for a clothes dryer...Ch. 1 - An overhead 25-m-long, uninsulated industrial...Ch. 1 - Under conditions for which the same room...Ch. 1 - A spherical interplanetary probe of 0.5-m diameter...Ch. 1 - An instrumentation package has a spherical outer...Ch. 1 - Consider the conditions of Problem 1.22. However,...Ch. 1 - If TsTsur in Equation 1.9, the radiation heat...Ch. 1 - A vacuum system, as used ¡n sputtering...Ch. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water (pin=10bar,Tin=110C) enters...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold-...Ch. 1 - Chips of width L=15mm on a side are mounted to...Ch. 1 - Consider the transmission case of Problem 1...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - Prob. 1.48PCh. 1 - Liquid oxygen, which has a boiling into of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step ¡n semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace tor processing semiconductor materials...Ch. 1 - Prob. 1.58PCh. 1 - Consider the wind turbine of Example 1.3. To...Ch. 1 - Consider the conducting rod of Example 1.4...Ch. 1 - A long bus bar (cylindrical rod used for making...Ch. 1 - A 50mm45mm20mm cell phone chargerhas a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - A freezer compartment is covered with a...Ch. 1 - A vertical slab of Wood’s metal is joined to a...Ch. 1 - A photovoltaic panel of dimension 2m4m isinstalled...Ch. 1 - Following the hot vacuum forming of a...Ch. 1 - Prob. 1.69PCh. 1 - A computer consists of an array of five printed...Ch. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Consider the conditions of Problem 1.22,but the...Ch. 1 - Most of the energy we consume as food ¡s converted...Ch. 1 - Prob. 1.75PCh. 1 - The wall of an oven used to cure plastic parts is...Ch. 1 - An experiment to determine the convection...Ch. 1 - A thin electrical heating element provides a...Ch. 1 - A rectangular forced air healing duct is suspended...Ch. 1 - Consider the steam pipe of Example 1.2. The...Ch. 1 - During its manufacture, plate glass at 600°C is...Ch. 1 - The curing press of Example 1.9 involves exposure...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Prob. 1.84PCh. 1 - A solar flux of 700W/m2K is incident on a...Ch. 1 - In considering the following problems involving...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license