Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.10P
A freezer compartment consists of a cubical cavity that is 2 mon a side. Assume the bottom to be perfectlyinsulated. What is the minimum thickness of styrofoaminsulation
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 5.18: A furnace has inside dimensions of 1 m × 1.2 m × 1.5 m. The walls are 0.25 m
thick. The inside surface is at 750°C while the outside surface is at 80°C. If the conductivity of
the material is 0.45 W/mK determine the heat loss, taking into account the corner and edge
effects and also the bottom. (shape factors are taken from hand books).
h-1
Not sure what I did wrong
4
Chapter 1 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 1 - The thermal conductivity of a sheet of rigid,...Ch. 1 - The heat flux that is applied to the left face of...Ch. 1 - A concrete wall, which has a surface area of 20m2...Ch. 1 - The concrete slab of a basement is 11 in long. 8...Ch. 1 - Consider Figure 1.3. The heat flux in the...Ch. 1 - The heal flux through a wood slab 50 mm thick,...Ch. 1 - The inner and outer surface temperatures of a...Ch. 1 - A thermodynamic analysis of a proposed Brayton...Ch. 1 - A glass window of width W=1m and height H=2m is 5...Ch. 1 - A freezer compartment consists of a cubical cavity...
Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - An inexpensive food and beverage container is...Ch. 1 - What is the thickness required of a masonry wall...Ch. 1 - A wall is made from an inhomogeneous...Ch. 1 - The 5-mm-thick bottom of a 200-mm-diameter panmay...Ch. 1 - A square silicon chip (k=150W/mK) is of width...Ch. 1 - For a boiling process such as shown in Figure 1.5...Ch. 1 - You’ve experienced convection cooling if you’ve...Ch. 1 - Air at 40°C flows over a long, 25-mm-diameter...Ch. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - The free convection heat transfer coefficient on a...Ch. 1 - A transmission case measures W=0.30m on a sideand...Ch. 1 - A cartridge electrical heater is shaped as a...Ch. 1 - A common procedure for measuring the velocity of...Ch. 1 - A square isothermal chip is of width w=5mm on...Ch. 1 - The temperature controller for a clothes dryer...Ch. 1 - An overhead 25-m-long, uninsulated industrial...Ch. 1 - Under conditions for which the same room...Ch. 1 - A spherical interplanetary probe of 0.5-m diameter...Ch. 1 - An instrumentation package has a spherical outer...Ch. 1 - Consider the conditions of Problem 1.22. However,...Ch. 1 - If TsTsur in Equation 1.9, the radiation heat...Ch. 1 - A vacuum system, as used ¡n sputtering...Ch. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water (pin=10bar,Tin=110C) enters...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold-...Ch. 1 - Chips of width L=15mm on a side are mounted to...Ch. 1 - Consider the transmission case of Problem 1...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - Prob. 1.48PCh. 1 - Liquid oxygen, which has a boiling into of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step ¡n semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace tor processing semiconductor materials...Ch. 1 - Prob. 1.58PCh. 1 - Consider the wind turbine of Example 1.3. To...Ch. 1 - Consider the conducting rod of Example 1.4...Ch. 1 - A long bus bar (cylindrical rod used for making...Ch. 1 - A 50mm45mm20mm cell phone chargerhas a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - A freezer compartment is covered with a...Ch. 1 - A vertical slab of Wood’s metal is joined to a...Ch. 1 - A photovoltaic panel of dimension 2m4m isinstalled...Ch. 1 - Following the hot vacuum forming of a...Ch. 1 - Prob. 1.69PCh. 1 - A computer consists of an array of five printed...Ch. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Consider the conditions of Problem 1.22,but the...Ch. 1 - Most of the energy we consume as food ¡s converted...Ch. 1 - Prob. 1.75PCh. 1 - The wall of an oven used to cure plastic parts is...Ch. 1 - An experiment to determine the convection...Ch. 1 - A thin electrical heating element provides a...Ch. 1 - A rectangular forced air healing duct is suspended...Ch. 1 - Consider the steam pipe of Example 1.2. The...Ch. 1 - During its manufacture, plate glass at 600°C is...Ch. 1 - The curing press of Example 1.9 involves exposure...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Prob. 1.84PCh. 1 - A solar flux of 700W/m2K is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1a.A copper slab (k = 372 W/m .K) is 3mm thick . it is protected from the corrosion on each side by a 2 mm thick layer of stainless steel ( k = 17 W/m .K). The temperature is 40°C on one side of this composite wall and 100°C on the other. Find the temperature distribution in the copper slab and the heat conducted through the wall. Given: ksteel = 17 W/m .K kcopoer = 372 W/m .K Steel Copper T2 Steel T1 = 40°C T3 T4 = 10°C 2mm 3mm 2mmarrow_forwardA cold storage room has a wall consists of an inside finish of 0.60 in cement plaster(k = 0.67), two layers of corkboard each 2.5 in thick (k = 0.03) and an outside layer of building tile. The value of U for the entire wall is 0.058, the internal air filmcoefficient is 1.65, the inner temperature is 23°F and the outside temperature is85°F. Calculate the heat flow through the unit wall area, Btu/hr.ft2A. 1.47 B. 2.47 C. 3.47 D. 4.47arrow_forwardinclude diagram.arrow_forward
- The diagram below shows a composite wall 1 m deep. The first layer of thickness LA is made of special refractory material (kA=0.50 W/m.K). The second layer, 0.30 m thick, consists of insulating material A (kB=0.1 W/m.K) and insulating material B (kC = 0.35 W/m.K). The temperature on the inner face of A (Tsup) is equal to 900°C and the ambient temperature (Tamb) is equal to 25°C. The heat transfer coefficient h is equal to 10 W/m².K. The rate of heat through the oven wall is constant and equal to 2500 W. Determine the thickness of the layer LA that forms wall Aarrow_forward1a.A copper slab ( k = 372 W/m .K ) is 3mm thick . it is protected from the corrosion on each side by a 2 mm thick layer of stainless steel ( k = 17 W/m .K ) . The temperature is 40oC on one side of this composite wall and 100oC on the other. Find the temperature distribution in the copper slab and the heat conducted through the wall. Given: ksteel = 17 W/m .K kcopper = 372 W/m .K Steel Copper Steel T1 = 40oC T2 T3 T4 = 10oC q…arrow_forwardA solid rod has a temperature profile described by the equation T= 5x+100 (K) and a thermal conductivity of k=10 (W/m*K) What is the heat flux, q?arrow_forward
- A hollow square box is made from 1ft^2 sheets of a prototype insulating material that is 0.75 inches thick. A 120W electrical heater is placed inside the box. Over time thermocouples attached to the box show that the interior and exterior surfaces of one face have reached the constant temperatures of 150 degrees and 90 degrees. What is the thermal conductivity?arrow_forward8. The temperatures on the inner and outer sides of a furnace wall are 650°C and 250° C respectively. It is exposed to ambient air at 50°C. To reduce the heat loss from the furnace, its wall thickness is increased to double. Determine the %age decrease in heat loss due to change in wall thickness assuming no change in surface and ambient temperatures.arrow_forwardneed fastarrow_forward
- 1. A 140 mm thick wall of 5 m x 3 m size is made of red brick (k = 0.6 W/m-K). It is covered on both sides by layers of plaster, 2 cm thick (k = 0.71 W/m-K). The wall has a double pane window size of 120 cm x 120 cm. The double pane window consists of 2 sheets of glass 6 mm thick (k = 0.96 W/m-K) separated by 138.8 mm thick air gap (k = 0.025 W/m- K). If the inner and outer surface temperatures are 18°C and 37°C, determine the total rate of heat transfer (W) through the composite wall and glass window. Express your final answer in five significant figures.arrow_forward3. A composite plain wall is to be constructed of (1/4)-in. stainless steel (k-17.03 W/m-K), 3-in. of corkboard (k=0.04 W/m-K) and (1/2)-in. of plastic (k=2.6 W/m-K). (a) Draw a thermal circuit for the steady-state heat conduction through this wall; (b) Evaluate the individual thermal resistances of each material layer; (c) Determine the heat flux if the inside steel surface is maintained at 400 K and the outer surface of plastic surface is held at 300 K; and (d) What are the temperatures on each surface of the corkboard under these conditions?arrow_forward[2] An array of electronic chips is mounted within a sealed rectangular enclosure, and cooling is implemented by attaching an aluminum heat sink (k = 180 W/m K). The base of the heat sink has dimensions of w1 = W2 = 100 mm, while the 6 fins are of thickness t = 10 mm and pitch S = 18 mm. The fin length is Lr = 50 mm, and the base of the heat sink has a thickness of Lb = 10 mm. L -Chips Water u T Electronic package, P elec If cooling is implemented by water flow through the heat sink, with uo = 3 m/s and To = temperature Tb of the heat sink when power dissipation by the chips is Pelec = 1800 W? The average convection coefficient for surfaces of the fins and the exposed base may be estimated by assuming parallel flow over a flat plate. Properties of the water may be approximated as k = 0.62 W/m-K, p = 995 kg/m3, Cp = 4178 J/kg-K, v = 7.73 x 10-7 m2/s, and Pr = 5.2. 17°C, what is the base a.) Base temperature. А. 37.8°C B. 43.9°C С. 31.4°С D. 46.2°Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license