Electric Cars
In recent years, practical hybrid cars have hit the road—cars in which the gasoline engine runs a generator that charges batteries that run an electric motor. These cars offer increased efficiency, but significantly greater efficiency could be provided by a purely electric car run by batteries that you charge by plugging into an electric outlet in your house.
But there’s a practical problem with such vehicles: the time necessary to recharge the batteries. If you refuel your car with gas at the pump, you add 130 MJ of energy per gallon. If you add 20 gallons, you add a total of 2.6 GJ in about 5 minutes. That’s a lot of energy in a short time; the electric system of your house simply can’t provide power at this rate.
There’s another snag as well. Suppose there were electric filling stations that could provide very high currents to recharge your electric car. Conventional batteries can’t recharge very quickly; it would still take longer for a recharge than to refill with gas.
One possible solution is to use capacitors instead of batteries to store energy. Capacitors can be charged much more quickly, and as an added benefit, they can provide energy at a much greater rate— allowing for peppier acceleration. Today’s capacitors can’t store enough energy to be practical, but future generations will.
The Tesla Roadster, a production electric car, has a 375 V battery system that can provide a power of 200 kW. At this peak power, what is the current supplied by the batteries?
- A. 75 kA
- B. 1900 A
- C. 530 A
- D. 75 A
Want to see the full answer?
Check out a sample textbook solutionChapter P Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
Campbell Essential Biology with Physiology (5th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Campbell Biology (11th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Human Anatomy & Physiology (2nd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- Integrated Concepts: A 12.0 V battery-operated bottle warmer heats 50.0 g of glass, 2.50 102 g of baby formula, and 2.00 102 g of aluminum from 20.0°C to 90.0°C. (a) How much charge is moved by the battery? (b) How many electrons per second flow if it takes 5.00 mm to warm the formula? (Hint: Assume that the specific heat of baby formula is about the same as the specific heat of water.)arrow_forwardConstruct Your Own Problem Consider a battery used to supply energy to a cellular phone. Construct a problem in which you determine the energy that must be supplied by the battery, and then calculate the amount of charge it must be able to move in order to supply this energy. Among the things to be considered are the energy needs and battery voltage. You may need to look ahead to interpret manufacturer’s battery ratings in ampere hours as energy in joules.arrow_forwardWhat would be the maximum cost of a CFL such that the total cost (investment plus operating) would be the same for both CFL and incandescent 60-W bulbs? Assume the cost of the incandescent bulb is 25 cents and that electricity costs 10 cents/kWh, Calculate the cost for 1000 hours, as in the cost effectiveness of CFL example.arrow_forward
- A prankster applies 450 V to an 80.0F capacitor and then tosses it to an unsuspecting victim. The victim’s finger is burned by the discharge of the capacitor through 0.200 g of flesh. Estimate, what is the temperature increase of the flesh? Is it reasonable to assume that no thermodynamic phase change happened?arrow_forwardReview A system consists of a planet and a star, with the planet in an elliptical orbit. As the planet orbits, which of these quantities change because they depend on the mass of the planet? Explain your answers. a. Gravitational potential energy b. Gravitational potential c. Kinetic energy d. Gravitational force e. Gravitational fieldarrow_forwardYou are part of a team working in a machine parts mechanics shop. An important customer has asked your company to provide springs with a very precise force constant k. You dense the electrical circuit shown in Figure P25.45 to measure the spring constant of each of the springs to be provided to the customer. The circuit consists of two identical, parallel metal plates free to move, other than being connected to identical metal springs, a switch, and a battery with terminal voltage V. With the switch open, the plates are uncharged, are separated by a distance d, and have a capacitance C. When the switch is closed, the plates become charged and attract each other. The distance between the plates changes by a factor f, after which the plates are in equilibrium between the spring forces and the attractive electric force between the plates. To keep the plates from going into oscillations, you hold each plate with insulating gloves as the switch is closed and apply a force on the plates that allows them to move together at a slow constant speed until they are at the equilibrium separation, at which point you can release the plates. You determine an expression for the spring constant in terms of C, d, V, and f. Figure P25.45 Problems 45 and 50.arrow_forward
- Integrated Concepts A lightning bolt strikes a tree, moving 20.0 C of charge through a potential difference of 1.00102 MV. (a) What energy was dissipated? (b) What mass of water could be raised from 15°C to the boiling point and then boiled by this energy? (c) Discuss the damage that could be caused to the tree by the expansion of the boiling steam.arrow_forwardIntegrated Concepts (a) What is the average power output of a heart defibrillator that dissipates 400 J of energy in 10.0 ms? (b) Considering the high-power output, why doesn’t the defibrillator produce serious burns?arrow_forwardRank the potential energies of the lour systems of particles shown in Figure OQ25.5 from largest to smallest. Include equalities if appropriate.arrow_forward
- In different experimental trials, an electron, a proton, or a doubly charged oxygen atom (O--), is fired within a vacuum tube. The particle's trajectory carries it through a point where the electric potential is 40.0 V and then through a point at a different potential. Rank each of the following cases according to the change in kinetic energy of the particle over this part of its flight from the largest increase to the largest decrease in kinetic energy. In your ranking, display any cases of equality, (a) An electron moves from 40.0 V to 60.0 V. (b) An electron moves front 40.0 V to 20.0 V. (c) A proton moves from 40.0 V to 20.0 V'. (d) A proton moves from 40.0 V to 10.0 V. (e) An O-- ion mines from 40.0 V to 60.0 V.arrow_forwardUnreasonable Results (a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van de Graaff terminal? (b) What is unreasonable about this result? (C) Which assumptions are responsible?arrow_forwardIntegrated Concepts A battery-operated car utilizes a 12.0 V system. Find the charge the batteries must be able to move in order to accelerate the 750 kg car from rest to 25.0 m/s. make it climb a 2.00 102 m high hill, and then cause it to travel at a constant 25.0 m/s by exerting a 5.00 102 N force for an hour.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning