College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter P.4, Problem 10P
To determine
The intensity, after travelling 12 cm through tissue.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ultrasound is absorbed in the body; this complicates the use of ultrasound to image tissues. The intensity of a beam of ultrasound decreases by a factor of 2 after traveling a distance of 40 wavelengths. Each additional travel of 40 wavelengths results in a decrease by another factor of 2.
A physician is making an image with ultrasound of initial intensity 1000 W/m2. When the frequency is set to 1.0 MHz, the intensity drops to 500 W/m2 at a certain depth in the patient’s body. What will be the intensity at this depth if the physician changes the frequency to 2.0 MHz?A. 750 W/m2 B. 500 W/m2C. 250 W/m2 D. 125 W/m2
Ultrasound is absorbed in the body; this complicates the use of ultrasound to image tissues. The intensity of a beam of ultrasound decreases by a factor of 2 after traveling a distance of 40 wavelengths. Each additional travel of 40 wavelengths results in a decrease by another factor of 2.
A beam of 1.0 MHz ultrasound begins with an intensity of 1000 W/m2. After traveling 12 cm through tissue with no significant reflection, the intensity is aboutA. 750 W/m2 B. 500 W/m2C. 250 W/m2 D. 125 W/m2
Solar cells convert the energy of incoming light to electric energy; a good quality cell operates at an efficiency of 15%. Each person in the United States uses energy (for lighting, heating, transportation, etc.) at an average rate of 11 kW. Although sunlight varies with season and time of day, solar energy falls on the United States at an average intensity of 200 W/m2. Assuming you live in an average location, what total solar-cell area would you need to provide all of your energy needs with energy from the sun? Express your answer with the appropriate units.
Chapter P Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. P.1 - Prob. 1PCh. P.1 - The following questions are related to the passage...Ch. P.1 - The following questions are related to the passage...Ch. P.1 - Prob. 4PCh. P.1 - Animal Athletes Different animals have very...Ch. P.1 - Animal Athletes Different animals have very...Ch. P.1 - Animal Athletes Different animals have very...Ch. P.1 - Animal Athletes Different animals have very...Ch. P.1 - Animal Athletes Different animals have very...Ch. P.1 - The drag force on an object moving in a liquid is...
Ch. P.1 - The drag force on an object moving in a liquid is...Ch. P.1 - Sticky Liquids BIO The drag force on an object...Ch. P.1 - The drag force on an object moving in a liquid is...Ch. P.1 - Pulling Out of a Dive Falcons are excellent fliers...Ch. P.1 - Pulling Out of a Dive Falcons are excellent fliers...Ch. P.1 - Pulling Out of a Dive Falcons are excellent fliers...Ch. P.1 - Bending Beams If you bend a rod down, it...Ch. P.1 - Bending Beams If you bend a rod down, it...Ch. P.1 - Bending Beams If you bend a rod down, it...Ch. P.1 - Additional Integrated Problems 20. You go to the...Ch. P.1 - If you stand on a scale at the equator, the scale...Ch. P.1 - Additional Integrated Problems Dolphins and other...Ch. P.2 - Prob. 1PCh. P.2 - Prob. 2PCh. P.2 - Prob. 3PCh. P.2 - Prob. 4PCh. P.2 - The following passages and associated questions...Ch. P.2 - The following passages and associated questions...Ch. P.2 - The following passages and associated questions...Ch. P.2 - The following passages and associated questions...Ch. P.2 - The following passages and associated questions...Ch. P.2 - Testing Tennis Balls Tennis balls are tested by...Ch. P.2 - Testing Tennis Balls Tennis balls are tested by...Ch. P.2 - Testing Tennis Balls Tennis balls are tested by...Ch. P.2 - Squid Propulsion Squid usually move by using their...Ch. P.2 - Squid Propulsion Squid usually move by using their...Ch. P.2 - Squid Propulsion Squid usually move by using their...Ch. P.2 - Squid Propulsion Squid usually move by using their...Ch. P.2 - Teeing Off A golf club has a lightweight flexible...Ch. P.2 - Teeing Off A golf club has a lightweight flexible...Ch. P.2 - Teeing Off A golf club has a lightweight flexible...Ch. P.2 - Teeing Off A golf club has a lightweight flexible...Ch. P.2 - Additional Integrated Problems Football players...Ch. P.2 - Additional Integrated Problems The unit of...Ch. P.2 - Additional Integrated Problems A 100 kg football...Ch. P.2 - Additional Integrated Problems A swift blow with...Ch. P.2 - Additional Integrated Problems A childs sled has...Ch. P.3 - Size and Life Physicists look for simple models...Ch. P.3 - Size and Life Physicists look for simple models...Ch. P.3 - Size and Life Physicists look for simple models...Ch. P.3 - Size and Life Physicists look for simple models...Ch. P.3 - Prob. 6PCh. P.3 - Prob. 7PCh. P.3 - Prob. 8PCh. P.3 - Prob. 9PCh. P.3 - Prob. 10PCh. P.3 - Prob. 11PCh. P.3 - Prob. 12PCh. P.3 - Prob. 13PCh. P.3 - Prob. 14PCh. P.3 - Passenger Balloons Long-distance balloon flights...Ch. P.3 - Passenger Balloons Long-distance balloon flights...Ch. P.3 - Passenger Balloons Long-distance balloon flights...Ch. P.3 - Prob. 18PCh. P.3 - Prob. 19PCh. P.3 - Prob. 20PCh. P.3 - Prob. 21PCh. P.4 - Waves in the Earth and the Ocean In December 2004,...Ch. P.4 - Waves in the Earth and the Ocean In December 2004,...Ch. P.4 - Waves in the Earth and the Ocean In December 2004,...Ch. P.4 - Waves in the Earth and the Ocean In December 2004,...Ch. P.4 - Waves in the Earth and the Ocean In December 2004,...Ch. P.4 - Prob. 6PCh. P.4 - Prob. 7PCh. P.4 - Prob. 8PCh. P.4 - Prob. 9PCh. P.4 - Prob. 10PCh. P.4 - Prob. 11PCh. P.4 - Prob. 12PCh. P.4 - Prob. 13PCh. P.4 - Prob. 14PCh. P.4 - Prob. 15PCh. P.4 - Prob. 16PCh. P.4 - In the Swing A rope swing is hung from a tree...Ch. P.4 - In the Swing A rope swing is hung from a tree...Ch. P.4 - In the Swing A rope swing is hung from a tree...Ch. P.4 - Additional Integrated Problems The jumping gait of...Ch. P.4 - Prob. 21PCh. P.5 - Scanning Confocal Microscopy Although modern...Ch. P.5 - If, because of a poor-quality objective, the light...Ch. P.5 - The resolution of a scanning confocal microscope...Ch. P.5 - Prob. 4PCh. P.5 - In a horses eye, the image of a close object will...Ch. P.5 - Prob. 6PCh. P.5 - A horse is looking straight ahead at a person who...Ch. P.5 - Prob. 8PCh. P.5 - Light of wavelength 600 nm in air passes into the...Ch. P.5 - Prob. 10PCh. P.5 - Prob. 11PCh. P.5 - 12. In human vision, the curvature of the cornea...Ch. P.5 - Prob. 13PCh. P.5 - 14. Figure V.2c shows the lens of the eye bringing...Ch. P.5 - The pupil of your eye is smaller in bright light...Ch. P.5 - People with good vision can make out an...Ch. P.5 - Prob. 17PCh. P.5 - Prob. 18PCh. P.6 - The Greenhouse Effect and Global Warming...Ch. P.6 - The Greenhouse Effect and Global Warming...Ch. P.6 - The Greenhouse Effect and Global Warming...Ch. P.6 - The Greenhouse Effect and Global Warming...Ch. P.6 - The Greenhouse Effect and Global Warming...Ch. P.6 - Prob. 6PCh. P.6 - Prob. 7PCh. P.6 - The following passages and associated questions...Ch. P.6 - Prob. 9PCh. P.6 - Prob. 10PCh. P.6 - Prob. 11PCh. P.6 - Electric Cars In recent years, practical hybrid...Ch. P.6 - Electric Cars In recent years, practical hybrid...Ch. P.6 - Electric Cars In recent years, practical hybrid...Ch. P.6 - Electric Cars In recent years, practical hybrid...Ch. P.6 - Wireless Power Transmission Your laptop has...Ch. P.6 - Wireless Power Transmission Your laptop has...Ch. P.6 - Wireless Power Transmission Your laptop has...Ch. P.6 - Wireless Power Transmission Your laptop has...Ch. P.6 - Additional Integrated Problems 20. A 20 resistor...Ch. P.6 - Prob. 21PCh. P.7 - Prob. 1PCh. P.7 - Prob. 2PCh. P.7 - Prob. 3PCh. P.7 - Prob. 4PCh. P.7 - Prob. 5PCh. P.7 - Prob. 6PCh. P.7 - Prob. 7PCh. P.7 - Prob. 8PCh. P.7 - Prob. 9PCh. P.7 - Prob. 10PCh. P.7 - Prob. 11PCh. P.7 - Prob. 12PCh. P.7 - Prob. 13PCh. P.7 - Prob. 14PCh. P.7 - Prob. 15PCh. P.7 - Prob. 16PCh. P.7 - Prob. 17PCh. P.7 - Prob. 18PCh. P.7 - Many speculative plans for spaceships capable of...Ch. P.7 - A muon is a lepton that is a higher-mass (rest...Ch. P.7 - A muon is a lepton that is a higher-mass (rest...
Knowledge Booster
Similar questions
- The area of a typical eardrum is about 5.00 X 10-5 m2. (a) (Calculate the average sound power incident on an eardrum at the threshold of pain, which corresponds to an intensity of 1.00 W/m2. (b) How much energy is transferred to the eardrum exposed to this sound lor 1.00 mill?arrow_forwardSolar cells convert the energy of incoming light to electric energy; a good quality cell operates at an efficiency of 15%. Each person in the United States uses energy (for lighting, heating, transportation, etc.) at an average rate of 11 kW. Although sunlight varies with season and time of day, solar energy falls on the United States at an average intensity of 200 W/m2. Assuming you live in an average location, what total solar-cell area would you need to provide all of your energy needs with energy from the sun?arrow_forwardAn echocardiogram can measure the Doppler shift of the sound reflected from flowing blood. A sound wave of 5 MHz is used to image the heart and a shift of 100 Hz is detected from a region of flowing blood. What is the blood's speed? [Note: The speed of sound in heart tissue is about 1500 m/s.] *Clarification: The frequency is shifting up. That is, the new fewquency is (5MHZ + 100 Hz).arrow_forward
- High‑intensity focused ultrasound (HIFU) is one treatment for certain types of cancer. During the procedure, a narrow beam of high‑intensity ultrasound is focused on the tumor, raising its temperature to nearly 90 degrees Celsius and killing it. A range of frequencies and intensities can be used, but in one treatment a beam of frequency 3.10 MHz3.10 MHz produced an intensity of 1625.0 W/cm2 The energy was delivered in short pulses for a total time of 2.90 s over an area measuring 1.20 mm by 5.30 mm. The speed of sound in the soft tissue was 1590 m/s, and the density of that tissue was 1498.0 kg/m3 What was the wavelength λ of the ultrasound beam in meters? How much energy Etotal was delivered to the tissue during the 2.90 s treatment in Joules? What was the maximum displacement A of the molecules in the tissue as the beam passed through?arrow_forwardA typical adult ear has a surface area of 1.41 × 10-3 m2. The sound intensity during a normal conversation is about 3.02 × 10-6 W/m2 at the listener's ear. Assume that the sound strikes the surface of the ear perpendicularly. How much power is intercepted by the ear?arrow_forwardThreshold of Pain. You are investigating the report of a UFO landing in an isolated portion of New Mexico, and you encounter a strange object that is radiating sound waves uniformly in all directions. Assume that the sound comes from a point source and that you can ignore reflections. You are slowly walking toward the source. When you are 7.5 m from it, you measure its intensity to be 0.11 W/m2. An intensity of 1.0 W/m2 is often used as the “threshold of pain.” How much closer to the source can you move before the sound intensity reaches this threshold?arrow_forward
- Bats emit ultrasonic waves with a frequency as high as 1.70 × 105 Hz. What is the wavelength of an ultrasonic wave with frequency 1.70 × 105 Hz in air of temperature 10.9°C? The speed of sound in air at 0°C is v = 331 m/s (see Table 12.1).arrow_forwardUltrasound with frequency 11.3 MHz is passing through fat. The ultrasound travels at the speed of 1450 m/s in the fat. The ultrasound wave reaches the liver and some portion transmits through the liver. The acoustic impedance of the liver is Z= 1650000 kg/m^2s What is the wavelength of the ultrasound in the fat? What is the acoustic impedence of the fat?(p+920 kg/m^3 for the fat What is the proportion of the ultrasound energy reflected at the fat liver boundary? What is the speed of ultrasound int the liver? p= 1015 kg/m^3 for the liver What is the wavelength of the ultrasound in the liverarrow_forwardA mother hawk screeches as she dives at you. You recall from biology that female hawks screech at 792 HzHz, but you hear the screech at 883 HzHz. How fast is the hawk approaching?arrow_forward
- The intensity of the sound wave from a jet airplane as it is taking off is 100 W/m2 at a distance of 6.02 m. What is the intensity of the sound wave that reaches the ears of a person standing at a distance of 120 m from the runway? Assume that the sound wave radiates from the airplane equally in all directions. 173.6 mW/m2arrow_forwardThe bat uses its ultrasonic radar instead of sight when flying in the dark. If the bat's own flight speed is 5.9 m / s and another animal flies towards the bat at a speed of 2.0 m / s, what frequency does the bat detect when reflected from the target when the frequency of the sound emitted by the bat is 45.9 kHz? Use a speed of 340 m / s. Give the answer in kilohertz to one decimal place.arrow_forwardA sound wave has a frequency of 632 Hz in air and a wavelength of 0.51 m. What is the temperature of the air? Assume the velocity of sound at 0°C is 331 m/s. Answer in units of °C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning