Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.15, Problem 44SEP
In Figure 8.12, determine the degree of freedom, F, according to the Gibbs rule at the following points. For each point explain what the determined degree of freedom indicates.
- a. At the melting point of pure tin.
- b. Inside the α region.
- c. Inside the α + liquid region
- d. Inside the α + β region
- e. At the eutectic point
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. Match the proper description of the microstructure depicted below. Put the corresponding number/letter
in the box beneath the microstructure. Assume equilibrium cooling conditions.
Fe3C
Fe3C
Fe3C
In a binary Fe-Fe3C system, what is the transformation that occurs when cooling an austenistic mixture of 2% C by weight from 1100°C to below the eutectoid temperature? What is the microstructure, and how is it formed? What are the concentrations of the total and partial phases? Data: eutectoid temperature: 723 ºC, eutectoid concentration: 0.76% C, limit concentration of ferrite: 0.022%, limit concentration of cementite: 6.7%.
answer question 5
Chapter 8 Solutions
Foundations of Materials Science and Engineering
Ch. 8.15 - Define (a) a phase in a material and (b) a phase...Ch. 8.15 - In the pure water pressure-temperature equilibrium...Ch. 8.15 - How many triple points are there in the pure iron...Ch. 8.15 - Write the equation for the Gibbs phase rule and...Ch. 8.15 - Refer to the pressuretemperature equilibrium phase...Ch. 8.15 - (a) What is a cooling curve? (b) What type of...Ch. 8.15 - Prob. 7KCPCh. 8.15 - What is an alloy? What is the difference between...Ch. 8.15 - Prob. 9KCPCh. 8.15 - What is the significance of the liquidus curve?...
Ch. 8.15 - Prob. 11KCPCh. 8.15 - Prob. 12KCPCh. 8.15 - Prob. 13KCPCh. 8.15 - Describe the mechanism that produces the...Ch. 8.15 - Can coring and surrounding occur in a...Ch. 8.15 - What is a monotectic invariant reaction? How is...Ch. 8.15 - Write equations for the following invariant...Ch. 8.15 - How are eutectic and eutectoid reactions similar?...Ch. 8.15 - Distinguish between (a) a terminal phase and (b)...Ch. 8.15 - Distinguish between (a) an intermediate phase and...Ch. 8.15 - What is the difference between a congruently...Ch. 8.15 - Consider an alloy containing 70 wt% Ni and 30 wt%...Ch. 8.15 - Consider the binary eutectic coppersilver phase...Ch. 8.15 - If 500 g of a 40 wt% Ag60 wt% Cu alloy is slowly...Ch. 8.15 - A lead-tin (PbSn) alloy consists of 60 wt%...Ch. 8.15 - A PbSn alloy (Fig. 8.12) contains 40 wt% and 60...Ch. 8.15 - An alloy of 30 wt% Pb70 wt% Sn is slowly cooled...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - In the copperlead (CuPb) system (Fig. 8.24) for an...Ch. 8.15 - For an alloy of Cu70 wt% Pb (Fig. 8.24), determine...Ch. 8.15 - What is the average composition (weight percent)...Ch. 8.15 - Consider an Fe4.2 wt% Ni alloy (Fig. 8.17) that is...Ch. 8.15 - Consider an Fe5.0 wt% Ni alloy (Fig. 8.17) that is...Ch. 8.15 - Determine the weight percent and composition in...Ch. 8.15 - Determine the composition in weight percent of the...Ch. 8.15 - Draw, schematically, the liquidus and the solidus...Ch. 8.15 - Consider the CuZn phase diagram of Figure 8.26. a....Ch. 8.15 - Consider the nickelvanadium phase diagram of...Ch. 8.15 - Consider the titaniumaluminum phase diagram of...Ch. 8.15 - What is the composition of point y in Figure...Ch. 8.15 - In Figure 8.12, determine the degree of freedom,...Ch. 8.15 - The cooling curve of an unknown metal shows a...Ch. 8.15 - In the PbSn phase diagram (Fig. 8.12), answer the...Ch. 8.15 - Based on the CuAg phase diagram in Figure P8.23,...Ch. 8.15 - Based on the PdAg phase diagram in Figure EP 8.3,...Ch. 8.15 - Prob. 49SEPCh. 8.15 - Derive the lever rule for the amount in weight...Ch. 8.15 - Based on the AlNi phase diagram given in Figure...Ch. 8.15 - Prob. 52SEPCh. 8.15 - Based on the Al2O3SiO2 phase diagram in Figure...Ch. 8.15 - (a) Design a CuNi alloy that will be completely...Ch. 8.15 - Prob. 55SEPCh. 8.15 - Given that Pb and Sn have similar tensile...Ch. 8.15 - Consider the sugarwater phase diagram shown in...Ch. 8.15 - In Figure P8.57, if 60 g of water and 140 g of...Ch. 8.15 - In Figure P8.57, if 30 g of water and 170 g of...Ch. 8.15 - At 80C, if the wt% of sugar is 80%, (a) what...Ch. 8.15 - (a) Based on the phase diagram in Figure P8.61,...Ch. 8.15 - Referring to Figure P8.61. explain what happens as...Ch. 8.15 - Referring to Figure P8.61, (a) explain what...Ch. 8.15 - Using Figure P8.40, explain what the phase diagram...Ch. 8.15 - Using Figure P8.40. explain why, according to the...Ch. 8.15 - (a) In the TiAl phase diagram. Figure P8.42, what...Ch. 8.15 - Draw an approximate hypothetical phase diagram for...Ch. 8.15 - Draw the hypothetical phase diagram for a binary...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In a binary Fe-Fe3C system, what is a transformation that occurs when cooling an austenistic mixture of 2% C by weight from 1100°C to below the eutectoid temperature? What is the microstructure, and how is it formed? What are the total and partial phases? Given:Eutectoid temperature=723°C; Eutectoid concentration=0.76% C; Limit concentration of ferrite=0.022%; Limiting concentration of cementite: 6.7%.arrow_forwardQ1 / Two metals Beryllium (Be) and Silicon (Si) have melting points 1282°C and 1414 °C respectively, are completely soluble as liquids but completely insoluble as solids . They form a eutectic at 1090°C containing 61 wt% Si -39wt% Be? Determine the following:- 1- Draw the thermal equilibrium phase diagram and identify all phases are present in diagram ,then sketches what happens in microstructure when the alloys containing , a- 10wt% Si, b-70wt%Si , solidify completely. 2- Determine the composition and the amount of each phase for the alloy which contain 15 wt% Si-85wt% Be at 1150°C If the alloy is hypoeutectic determine the amount of eutectic at 600 °C? or hypereutectic andarrow_forwardCarbon steel (0.45%C) is subjected to different heat treatment procedures. Which one gives the best complex properties to steel а. austenitization and fast cooling (water) b. austenitization and normalization (air cooling) О с. austenitization and slow cooling (furnace) d. austenitization and quenching plus tempering e. austenitization and age-hardeningarrow_forward
- Referring to Figure 1, answer the following: What are the liquidus and solidus temperatures for an 80%Pb20%Tl alloy? What is the composition of the solid solution phase for the aforementioned alloy once we hit the liquidus temperature upon cooling? For the same alloy above, use the inverse lever rule to calculate the %solid and %liquid at 325Carrow_forwardDraw thermal equilibrium diagram for the binary alloy system (Si-Au), from the following data:- a- Silicon melts at 1414 °C, and gold melts at 1064 °C. b-Eutectic is formed at 360°C containing 20 Wt% Si -80 Wt% Au, and identify all phases are present in the diagram c-Determine the amount of each phase for the alloy which consist of 60 Wt% Si- 40Wt % Au at 1200 °C and 800 °C ,then determine the amount of eutectic at 200 °C?arrow_forward1200 50% Ag 71.9% Ag 1100 1000 900 100% Cu Temperature (°C) 800 8% Ag\ 20% Ag 700 Time 100% Ag 90% Ag Figure V Cooling curves for a series of Cu-Ag alloys. 11. Cooling curves are obtained for a series of Cu- Ag alloys. Use the data in Figure 4 to produce the Cu-Ag phase diagram. The maximum solubility of Ag in Cu is 7.9% and the maximum solubility of Cu in Ag is 8.8%. The solubilities at room temperature are near zero.arrow_forward
- An alloy consisting of completely soluble cadmium (Cd) and zinc (Zn) in the liquid state, but neither of them dissolves in each other in the solid state. the table shown below shows the solidification temperatures for various alloys of cadmium and zinc. 1. Draw the equilibrium diagram according to the information given and data in the table and indicating all important temperature and phases. 2. Find the percentage of each phases and percentage of constituents of the alloy that contain 60 % Zn and at a temperature 300 °C. 3. Find the melting point for the following alloys 20 % Cd, 80% Cd 4. Draw the internal structure, noting the phases of the following alloys A) 30 % Cd at 290 °C b) 60 % Cd at room temperature. % of Zinc in alloy Start of solidification ("C) End of solidification ("C) 0 10 14 20 30 40 50 60 321 290 266 275 293 310 328 345 70 80 90 100 362 390 401 419 266 266 266 266 266 266 266 266 266 266 266 266arrow_forwardQI/ Draw a thermal equilibrium diagram for the binary alloy system (Si –Au), from the following data:- a- Si melts at 1414 °C, and Au melts at 1064 °C , and identify all phases are present in the diagram. b- Eutectic is formed at 360°C containing 20 Wt% Si -80 Wt% Au . c- Determine the amount of each phase for the alloy which consist 60 Wt% Si- 40Wt % Au at 1200 °C and 800 °C ,then determine the amount of eutectic at 200 °C?arrow_forwardPresume that we have 100 grams of an alloy with overall chemical composition of90 wt. pct. tin and 10 wt. pct. lead. The alloy (in the liquid state) is cooled atnear-equilibrium conditions.Determine the following:At slightly below 183oC, what are the following: (parts a-h at a temperature below 183C please!)arrow_forward
- iii) For a 68 wt% Zn-32 wt% Cu alloy, make schematic sketches of the microstructure that would be observed for conditions of very slow cooling at the following temperatures: 1000°C, 760°C, 600°C and 400°C. Label all phases and indicate their approximate compositions. Comportion a In 20 40 60 100 1200 |2200 H2000 Liquid 1000 - 1800 デ+ダ H1600 J400 E 1200 600 400 『+キ 600 200 400 40 60 Conpositon tet% Zroarrow_forwardA 42 wt% Pb-58 wt% Mg alloy is heated to a temperature within the α + liquid phase region shown in Animated Figure 9.20. If the composition of the α phase is 30 wt% Pb, determine (a) The temperature of the alloyarrow_forward1-The microstructural design of Iron-Carbon(Fe-C) alloys has led to the development of vast range of steels for structural material applications. The phase diagram provide means for producing specific microstructures. Using the phase diagram below to answer the following questions A – If the liquid mixture of Fe-3%Wt C is slowly cooled from 1600 C to 1200C indicate the phase(S) that are present at 1200 C . Also calculate the composition of the of phases.(10) B-Describe the sequence of all phase transformation that accour from Fe-1.5%wt C is slowly cooled from 1600 C to 400 C. Use the diagram below to to describe the microstructures for each phase transformation (10)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Science, Phase Diagrams, Part 1; Author: Welt der Werkstoffe;https://www.youtube.com/watch?v=G83ZaoB3XCc;License: Standard Youtube License