Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.15, Problem 15KCP
Can coring and surrounding occur in a pcritectic-type alloy that is rapidly solidified? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Translate the given information in your words, figures given below.
Time-temperature cooling curve for the solidification of a small crucible of 50 percent antimony, 50% bismuth alloy.
Answer part b
A molten Ag-Cu (20%) alloy is allowed to cool slowly from liquid phase till room
temperature. Refer to Figure Ql and plot its cooling curve. Estimate % a just after it has
solidified at 779 °C and at room temperature. Sketch its microstructure and find %
eutectic.
Chapter 8 Solutions
Foundations of Materials Science and Engineering
Ch. 8.15 - Define (a) a phase in a material and (b) a phase...Ch. 8.15 - In the pure water pressure-temperature equilibrium...Ch. 8.15 - How many triple points are there in the pure iron...Ch. 8.15 - Write the equation for the Gibbs phase rule and...Ch. 8.15 - Refer to the pressuretemperature equilibrium phase...Ch. 8.15 - (a) What is a cooling curve? (b) What type of...Ch. 8.15 - Prob. 7KCPCh. 8.15 - What is an alloy? What is the difference between...Ch. 8.15 - Prob. 9KCPCh. 8.15 - What is the significance of the liquidus curve?...
Ch. 8.15 - Prob. 11KCPCh. 8.15 - Prob. 12KCPCh. 8.15 - Prob. 13KCPCh. 8.15 - Describe the mechanism that produces the...Ch. 8.15 - Can coring and surrounding occur in a...Ch. 8.15 - What is a monotectic invariant reaction? How is...Ch. 8.15 - Write equations for the following invariant...Ch. 8.15 - How are eutectic and eutectoid reactions similar?...Ch. 8.15 - Distinguish between (a) a terminal phase and (b)...Ch. 8.15 - Distinguish between (a) an intermediate phase and...Ch. 8.15 - What is the difference between a congruently...Ch. 8.15 - Consider an alloy containing 70 wt% Ni and 30 wt%...Ch. 8.15 - Consider the binary eutectic coppersilver phase...Ch. 8.15 - If 500 g of a 40 wt% Ag60 wt% Cu alloy is slowly...Ch. 8.15 - A lead-tin (PbSn) alloy consists of 60 wt%...Ch. 8.15 - A PbSn alloy (Fig. 8.12) contains 40 wt% and 60...Ch. 8.15 - An alloy of 30 wt% Pb70 wt% Sn is slowly cooled...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - In the copperlead (CuPb) system (Fig. 8.24) for an...Ch. 8.15 - For an alloy of Cu70 wt% Pb (Fig. 8.24), determine...Ch. 8.15 - What is the average composition (weight percent)...Ch. 8.15 - Consider an Fe4.2 wt% Ni alloy (Fig. 8.17) that is...Ch. 8.15 - Consider an Fe5.0 wt% Ni alloy (Fig. 8.17) that is...Ch. 8.15 - Determine the weight percent and composition in...Ch. 8.15 - Determine the composition in weight percent of the...Ch. 8.15 - Draw, schematically, the liquidus and the solidus...Ch. 8.15 - Consider the CuZn phase diagram of Figure 8.26. a....Ch. 8.15 - Consider the nickelvanadium phase diagram of...Ch. 8.15 - Consider the titaniumaluminum phase diagram of...Ch. 8.15 - What is the composition of point y in Figure...Ch. 8.15 - In Figure 8.12, determine the degree of freedom,...Ch. 8.15 - The cooling curve of an unknown metal shows a...Ch. 8.15 - In the PbSn phase diagram (Fig. 8.12), answer the...Ch. 8.15 - Based on the CuAg phase diagram in Figure P8.23,...Ch. 8.15 - Based on the PdAg phase diagram in Figure EP 8.3,...Ch. 8.15 - Prob. 49SEPCh. 8.15 - Derive the lever rule for the amount in weight...Ch. 8.15 - Based on the AlNi phase diagram given in Figure...Ch. 8.15 - Prob. 52SEPCh. 8.15 - Based on the Al2O3SiO2 phase diagram in Figure...Ch. 8.15 - (a) Design a CuNi alloy that will be completely...Ch. 8.15 - Prob. 55SEPCh. 8.15 - Given that Pb and Sn have similar tensile...Ch. 8.15 - Consider the sugarwater phase diagram shown in...Ch. 8.15 - In Figure P8.57, if 60 g of water and 140 g of...Ch. 8.15 - In Figure P8.57, if 30 g of water and 170 g of...Ch. 8.15 - At 80C, if the wt% of sugar is 80%, (a) what...Ch. 8.15 - (a) Based on the phase diagram in Figure P8.61,...Ch. 8.15 - Referring to Figure P8.61. explain what happens as...Ch. 8.15 - Referring to Figure P8.61, (a) explain what...Ch. 8.15 - Using Figure P8.40, explain what the phase diagram...Ch. 8.15 - Using Figure P8.40. explain why, according to the...Ch. 8.15 - (a) In the TiAl phase diagram. Figure P8.42, what...Ch. 8.15 - Draw an approximate hypothetical phase diagram for...Ch. 8.15 - Draw the hypothetical phase diagram for a binary...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6- What is the critical cooling rate for hardening? Explain. Explain the effects of alloying elements on hardenability by showing them on the TTT (ZSD) diagram.arrow_forward(a) Figure 5 shows a phase diagram for the Nb-80 wt% W alloy which is solidified under under the nonequilibrium condition. Evaluate (i) the liquidus temperature (ii) the non-equilibrium solidus temperature (iii) the freezing range (iv) the composition of the first solid form during solidification (v) the composition of the last liquid to solidify (vi) the phase(s) present, the composition of the phase(s) and the amount of the phase(s) at 3000 °C (vii) the phase(s) present, the composition of the phase(s) and the amount of the phase(s) at 2800 °C.arrow_forwardLead-Tin (Pb-Sn) alloys are used in soldering applications. Draw phase diagram and Distinguish between the micro-structure at composition of “Pb40%Sn” and “Pb80%Sn”.arrow_forward
- What is the critical value of G for the directional solidification of two Al-Cu alloys (one containing 3wt.%Cu, the other 5wt.%Cu) at a rate of 0.08 mm/s ? For these alloys, k=0.14, m=-2.6°C/wt% and D=3x10-5cm²/s.arrow_forwardPlease do it correctly and step by step.arrow_forwardExplain how grain boundaries are formed upon solidification of metals.arrow_forward
- b) For the solidification of a metal, Tm =1000K with undercooling of 200K, calculate the rate of homogeneous nucleation in nuclei/m³/s. Neglect activation energy. Assume v=1o12/s and s'pd estimated as 1028/m³, AH=-1.26x10° J/m³, yLs= 0.16 J/m².arrow_forwardAt longer annealing times at appropriate temperatures, larger grains consume smaller ones. Summerize with justification if the statement is true or false? Schematics if drawn will be helpful {CLO-1, PLO-1} (10)arrow_forwardDescribe the cooling of a peritectic alloy with the concentration CO and sketch the microstructure during solidification. T S+α 8 S S+B a+ß В сarrow_forward
- Q1/ In a homogeneous solidification process, assume molten metal solidifies into a spherical nucleus with a BCC structure. The given data are; lattice parameter (0.292 nm), the heat of fusion energy (1.85×10-9 J/m³), latent surface free energy (0.204 J/m²), critical radius (1-35 nm), equilibrium melting temperature (1516 K), and room temperature (27 °C). Calculate the following for this metal; (a) supercooling value temperature (b) activation tree energy (c) number of atoms in a nucleus of critical size.arrow_forward1 a) Briefly describe the phenomenon of coring (also known as segregation) that occurs during solidification in isomorphous alloys and why it occurs? b) Cite one undesirable consequence of coring?arrow_forward(a) For the solidification of iron, calculate the critical radius r* and the activation free energy ΔG* if nucleation is homogeneous. Values for the latent heat of fusion and surface free energy are –1.85 × 109 J/m3 and 0.204 J/m2, respectively. Use the supercooling value ΔT = 286 K, and the melting point of iron is 1538°C. (Critical radius, r* in nm and Activation Free Energy ΔG* in J) (b) Now calculate the number of atoms found in a nucleus of critical size. Assume a lattice parameter of 0.292 nm for solid iron at its melting temperature. (Number of Atoms for Critical Size in atoms/critical nuclues)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Intro to Ceramics and Glasses — Lesson 2, Part 1; Author: Ansys Learning;https://www.youtube.com/watch?v=ArDFnBWH-8w;License: Standard Youtube License