Glencoe Chemistry: Matter and Change, Student Edition
1st Edition
ISBN: 9780076774609
Author: McGraw-Hill Education
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 133A
Interpretation Introduction
Interpretation:
The given table is to be completed.
Concept introduction:
The distance between the two atoms’ nuclei is termed as chemical bond. Bonds are classified on the basic of the nature of the atoms attached to it. There are mainly three types of
- Ionic bond
- Covalent bond
- Metallic bond
Expert Solution & Answer
Answer to Problem 133A
The given table is completed as shown below:
Solid | Bond Description | Characteristic of Solid | Example |
Ionic | Attraction between positive ions and negative ions | 1. Hard, Rigid, and brittle 2. High melting point. 3. Insulator in solid state. |
NaCl |
Covalent Molecular | Sharing of electrons between the atoms | 1. Soft 2. Low melting point 3. Insulator in solid state. |
|
Metallic | Attraction between positive ions and free electrons | 1. Malleable and ductile. 2. High melting point. 3. Conductor of heat and electricity. |
Silver (Ag) |
Covalent Network | Covalent bond between atoms | 1. Hard and brittle 2. Nonconductor |
Diamond |
Explanation of Solution
The given table is shown below.
Solid | Bond Description | Characteristic of Solid | Example |
Ionic | |||
Covalent Molecular | |||
Metallic | |||
Covalent Network |
The table is completed as shown below.
Solid | Bond Description | Characteristic of Solid | Example |
Ionic | The bond present in ionic solid is ionic bond. Ionic bond is formed by the electrostatic attraction between positive ions and negative ions. It takes place by complete transfer of electron/s. | 1. Ionic solid is hard, rigid, and brittle in nature. 2. Ionic solid has highest electrostatic force of attraction between the ions. Therefore, it requires more energy to melt. Therefore, it has high melting point. 3. Ionic solid is insulator in solid state but acts as conductor in molten state. |
NaCl |
Covalent Molecular | The bond present in covalent molecular solid is covalent bond. Covalent bond is formed by sharing of electrons between the two atoms. | 1. Covalent molecular solid is soft in nature. 2. It has low melting point. 3. Covalent molecular solid is insulator in solid state. |
|
Metallic | The bond present in metallic solid is metallic bond. Metallic solid is formed by the attraction between positive ions and free electrons. | 1. Metallic solid is malleable and ductile in nature. 2. It has high melting point. 3. Due to presence of free electron, metallic solid is a good conductor of heat and electricity. |
Silver (Ag) |
Covalent Network | The bond present in covalent solid is covalent bond. In covalent network solid, one atom is covalently bonded to many atoms. | 1. Covalent network solid is hard and brittle in nature. 2. Covalent network solid is a nonconductor |
Diamond |
Chapter 8 Solutions
Glencoe Chemistry: Matter and Change, Student Edition
Ch. 8.1 - Prob. 1PPCh. 8.1 - Prob. 2PPCh. 8.1 - Prob. 3PPCh. 8.1 - Prob. 4PPCh. 8.1 - Prob. 5PPCh. 8.1 - Prob. 6PPCh. 8.1 - Prob. 7SSCCh. 8.1 - Prob. 8SSCCh. 8.1 - Prob. 9SSCCh. 8.1 - Prob. 10SSC
Ch. 8.1 - Prob. 11SSCCh. 8.1 - Prob. 12SSCCh. 8.1 - Prob. 13SSCCh. 8.2 - Prob. 14PPCh. 8.2 - Prob. 15PPCh. 8.2 - Prob. 16PPCh. 8.2 - Prob. 17PPCh. 8.2 - Prob. 18PPCh. 8.2 - Prob. 19PPCh. 8.2 - Prob. 20PPCh. 8.2 - Prob. 21PPCh. 8.2 - Prob. 22PPCh. 8.2 - Prob. 23PPCh. 8.2 - Prob. 24PPCh. 8.2 - Prob. 25PPCh. 8.2 - Prob. 26PPCh. 8.2 - Prob. 27PPCh. 8.2 - Prob. 28PPCh. 8.2 - Prob. 29PPCh. 8.2 - Prob. 30PPCh. 8.2 - Prob. 31SSCCh. 8.2 - Prob. 32SSCCh. 8.2 - Prob. 33SSCCh. 8.2 - Prob. 34SSCCh. 8.2 - Prob. 35SSCCh. 8.2 - Prob. 36SSCCh. 8.3 - Prob. 37PPCh. 8.3 - Prob. 38PPCh. 8.3 - Prob. 39PPCh. 8.3 - Prob. 40PPCh. 8.3 - Prob. 41PPCh. 8.3 - Prob. 42PPCh. 8.3 - Prob. 43PPCh. 8.3 - Prob. 44PPCh. 8.3 - Prob. 45PPCh. 8.3 - Prob. 46PPCh. 8.3 - Prob. 47PPCh. 8.3 - Prob. 48PPCh. 8.3 - Prob. 49PPCh. 8.3 - Prob. 50SSCCh. 8.3 - Prob. 51SSCCh. 8.3 - Prob. 52SSCCh. 8.3 - Prob. 53SSCCh. 8.3 - Prob. 54SSCCh. 8.3 - Prob. 55SSCCh. 8.4 - Prob. 56PPCh. 8.4 - Prob. 57PPCh. 8.4 - Prob. 58PPCh. 8.4 - Prob. 59PPCh. 8.4 - Prob. 60PPCh. 8.4 - Prob. 61SSCCh. 8.4 - Prob. 62SSCCh. 8.4 - Prob. 63SSCCh. 8.4 - Prob. 64SSCCh. 8.4 - Prob. 65SSCCh. 8.4 - Prob. 66SSCCh. 8.4 - Prob. 67SSCCh. 8.5 - Prob. 68SSCCh. 8.5 - Prob. 69SSCCh. 8.5 - Prob. 70SSCCh. 8.5 - Prob. 71SSCCh. 8.5 - Prob. 72SSCCh. 8.5 - Prob. 73SSCCh. 8.5 - Prob. 74SSCCh. 8.5 - Prob. 75SSCCh. 8.5 - Prob. 76SSCCh. 8.5 - Prob. 77SSCCh. 8 - Prob. 78ACh. 8 - Prob. 79ACh. 8 - Prob. 80ACh. 8 - Prob. 81ACh. 8 - Prob. 82ACh. 8 - Prob. 83ACh. 8 - Prob. 84ACh. 8 - Prob. 85ACh. 8 - Prob. 86ACh. 8 - Prob. 87ACh. 8 - Prob. 88ACh. 8 - Prob. 89ACh. 8 - Prob. 90ACh. 8 - Prob. 91ACh. 8 - Prob. 92ACh. 8 - Prob. 93ACh. 8 - Prob. 94ACh. 8 - Prob. 95ACh. 8 - Prob. 96ACh. 8 - Prob. 97ACh. 8 - Prob. 98ACh. 8 - Prob. 99ACh. 8 - Prob. 100ACh. 8 - Prob. 101ACh. 8 - Prob. 102ACh. 8 - Prob. 103ACh. 8 - Prob. 104ACh. 8 - Prob. 105ACh. 8 - Prob. 106ACh. 8 - Prob. 107ACh. 8 - Prob. 108ACh. 8 - Prob. 109ACh. 8 - Prob. 110ACh. 8 - Prob. 111ACh. 8 - Prob. 112ACh. 8 - Prob. 113ACh. 8 - Prob. 114ACh. 8 - Prob. 115ACh. 8 - Prob. 116ACh. 8 - Prob. 117ACh. 8 - Prob. 118ACh. 8 - Prob. 119ACh. 8 - Rank the bonds according to increasing polarity....Ch. 8 - Prob. 121ACh. 8 - Prob. 122ACh. 8 - Use Lewis structures to predict the molecular...Ch. 8 - Prob. 124ACh. 8 - Prob. 125ACh. 8 - Prob. 126ACh. 8 - Prob. 127ACh. 8 - Prob. 128ACh. 8 - Prob. 129ACh. 8 - Prob. 130ACh. 8 - Prob. 131ACh. 8 - Prob. 132ACh. 8 - Prob. 133ACh. 8 - Prob. 134ACh. 8 - Prob. 135ACh. 8 - Prob. 136ACh. 8 - Prob. 137ACh. 8 - Prob. 138ACh. 8 - Prob. 139ACh. 8 - Prob. 140ACh. 8 - Prob. 141ACh. 8 - Prob. 142ACh. 8 - Prob. 143ACh. 8 - Prob. 144ACh. 8 - Prob. 145ACh. 8 - Prob. 1STPCh. 8 - Prob. 2STPCh. 8 - Prob. 3STPCh. 8 - Prob. 4STPCh. 8 - Prob. 5STPCh. 8 - Prob. 6STPCh. 8 - Prob. 7STPCh. 8 - Prob. 8STPCh. 8 - Prob. 9STPCh. 8 - Prob. 10STPCh. 8 - Prob. 11STPCh. 8 - Prob. 12STPCh. 8 - Prob. 13STPCh. 8 - Prob. 14STPCh. 8 - Prob. 15STPCh. 8 - Prob. 16STPCh. 8 - Prob. 17STPCh. 8 - Prob. 18STPCh. 8 - Prob. 19STP
Additional Science Textbook Solutions
Find more solutions based on key concepts
47. A block hangs in equilibrium from a vertical spring. When a second identical block is added, the original ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1. A person gets in an elevator on the ground floor and rides it to the top floor of a building. Sketch a veloc...
College Physics: A Strategic Approach (3rd Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
1. Which is a function of the skeletal system? (a) support, (b) hematopoietic site, (c) storage, (d) providing ...
Anatomy & Physiology (6th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Strain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forwardIn statistical thermodynamics, check the hcv following equality: ß Aɛ = KTarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward
- . 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Q2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY