Concept explainers
-12 A square plate of a width h and thickness t is Loaded by normal forces Pxand P and by shear forces V, as shown in the figure. These forces produce uniformly distributed stresses acting on the side faces of the plate.
(a) Calculate the change AV in the volume of the plate and the strain energy U stored in the plate if the dimensions are ft = 600 mm and f = 40 mm; the plate is made of magnesium with E = 41 GPa and v = 0,35; and the forces are Pv= 420 kN, P, = 210 kN, and V = 96 kN. (b) Find the maximum permissible thickness of the plate when the strain energy U must be at least 62 J. [Assume that all other numerical values in part (a) are unchanged.]
(c) Find the minimum width b of the square plate of thickness / = 40 mm when the change in volume of the plate cannot exceed 0.018% of the original volume.
(a)
The change
The strain energy
Answer to Problem 7.5.12P
The change
The strain energy
Explanation of Solution
Given information:
The normal force acting on the x-direction is
Figure (1)
Write the expression for the volumetric strain.
Here, the change in the volume of the plate is
Write the expression for the strain energy stored in the plate.
Here, the strain energy stored in the plate is
Write the expression of the original volume of plate
Here, the width of the plate is
Write the expression for the stress along x-direction.
Here the normal force along x-direction is
Write the expression for the stress along y-direction.
Here the normal force along y-direction is
Write the expression for the area of the plate.
Write the expression for the shear modulus.
Write the expression of the volumetric strain.
In the following plate we have two surface area at which shear force is applied so, the surface area for the shear stress is
Write the expression of the shear stress.
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The change
The strain energy
(b)
The maximum permissible thickness of the plate.
Answer to Problem 7.5.12P
The maximum permissible thickness of the plate is
Explanation of Solution
Given information:
The strain energy
Write the expression of the strain energy stored in the plate.
Calculation:
Substitute
Conclusion:
The maximum permissible thickness of the plate is
(c)
The minimum width
Answer to Problem 7.5.12P
The minimum width
Explanation of Solution
Given information:
The thickness of square plate is
Write the expression of the condition of the change in the length.
Calculation:
Substitute
Substitute
Substitute
Conclusion: The minimum width
Want to see more full solutions like this?
Chapter 7 Solutions
Mechanics of Materials (MindTap Course List)
- Plastic bar of diameter d = 32 mm is compressed in a testing device by a Force P = 190 N that is applied as shown in the figure. (a) Determine the normal and shear stresses acting: on all faces of stress elements oriented at (1 ) an angle 8 = 00, (2) an angle ?? = 22.5s, and (3) an angle ?? = 45°. In each case, show the stresses on a sketch of a properly oriented element. What are smaxtmax (b) Find smax and tmax in the plastic bar if a re-cantering spring of stiffness k is inserted into the testing device, as shown in the figure. The spring stillness is 1/6 of the axial stiffness of the plastic bar.arrow_forward• - 3 A rectangular plate in biaxial stress (see figure) is subjected to normal stresses u = 67 MPa (tension) and s = -23 MPa (compression). The plate has dimensions 400 X 550 X 20 mm and is made of steel with E = 200 GPa and v = 0.30. (a) Determine the maximum in-plane shear strain ?max in the plate. (b) Determine the change ?t in the thickness of the plate. (c) Determine the change ?t in the volume of the plate.arrow_forwardThe normal strain in the 45n direction on the surface of a circular tube (sec figure) is 880 × 10 when the torque T = 750 lb-in. The tube is made of copper alloy with G = 6.2 × 106 psi and y = 0.35. If the outside diameter d2of the tube is 0.8 in., what is the inside diameter dt? If the allowable normal stress in the tube is 14 ksi, what is the maximum permissible inside diameter d?arrow_forward
- A circular cylindrical steel tank (see figure) contains a volatile fuel under pressure, A strain gage at point A records the longitudinal strain in the tank and transmits this information to a control room. The ultimate shear stress in the wall of the tank is 98 MPa, and a factor of safety of 2,8 is required. (a) At what value of the strain should the operators take action to reduce the pressure in the tank? (Data for the steel are modulus of elasticity E = 210 GPa and Poisson's ratio v = 0.30.) (b) What is the associated strain in the radial directionarrow_forwardAn element of a material is subjected to plane stresses as shown in the figure. The stresses o, cry., and are 10 MPa, —15 MPa, and 5 MPa. respectively. Assume E = 200 GPa and v = 0.3. (a) Calculate the normal strain in the x, v. and z directions and the shear strain. (b) Calculate the strain-energy density of the element.arrow_forwardA copper bar with a rectangular cross section is held without stress between rigid supports (see figure). Subsequently, the temperature of the bar is raised 50°C (a) Determine the stresses on all faces of the elements A and B, and show these stresses on sketches of the elements. (Assume = 17.5 × 10-6/? and E = 120 GPa ) (b) If the shear stress at B is known to be 48 MPa at some inclination 8, find anglearrow_forward
- A cylindrical pressure vessel having a radius r = 14 in. and wall thickness t = 0,5 in, is subjected to internal pressure p = 375 psi, In addition, a torque T = 90 kip-ft acts at each end of the cylinder (see figure), (a) Determine the maximum tensile stress ctniXand the maximum in-plane shear stress Tmjv in the wall of the cylinder. (b) If the allowable in-plane shear stress is 4.5 ksi, what is the maximum allowable torque T\ (c) If 7 = 150 kip-ft and allowable in-plane shear and allowable normal stresses are 4.5 ksi and 11.5 ksi, respectively, what is the minimum required wall thicknessarrow_forwardA slightly tapered bar AB of rectangular cross section and length L is acted upon by a force P (see figure). The width of the bar varies uniformly From b2at end A to b1at end B. The thickness t is constant. (a) Determine the strain energy U of the bar. (b) Determine the elongation ?? of the bar by equating the strain energy to the work done by the force P.arrow_forwardSolve the preceding problem if the cube is granite (E = 80 GPa, v = 0.25) with dimensions E = 89 mm and compressive strains E = 690 X l0-6 and = = 255 X 10-6. For part (c) of Problem 7.6-5. find the maximum value of cr when the change in volume must be limited to 0.11%. For part. find the required value of when the strain energy must be 33 J.arrow_forward
- 7.5-11 in. cube of concrete (E = 4.5 X 106 psi. v = 0.2) is compressed in biaxial stress by means of a framework that is loaded as shown in the figure. Assuming that each load F equals 25 kips. determine the change iv in the volume of the cube and the strain energy U stored in the cube.arrow_forwardA circular aluminum tube of length L = 600 mm is loaded in compression by forces P (see figure). The outside and inside diameters are d2= 75 mm and d1= 63 mm, respectively. A strain gage is placed on the outside of the lube to measure normal strains in the longitudinal direction. Assume that E = 73 GPa and Poissons ratio is v = 0.33. (a) IF the compressive stress in the tube is 57 MPa, what is the load P? (b) If the measured strain is e = 78 J X 10-6, what is the shorteningarrow_forward-9The stresses acting on element B in the web of a wide-flange beam are found to be 14,000 psi compression in the horizontal direction and 2600 psi compression in the vertical direction. Also, shear stresses of magnitude 3800 psi act in the direct ions shown (see the figure for Problem 7.2-9). Determine the maximum shear stresses and associated normal stresses and show them on a sketch of a properly oriented element.arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning