
A cube of cast iron with sides of length a = 4.0 in. (see figure) is tested in a laboratory under triaxialsire.ss. Gages mounted on the testing machine show that the compressive strains in the material arc a
= -225 X l06and,ay = 37.5 X l0_.
Determine the following quantities: (a) the norm al stresses i. r,.. and acting on the x, y, and z faces of the cube; (b) the maximum shear stress r in the material; (C) the change ..W in the volume of the cube: (d) the strain energy U stored in the cube; (e) the maximum value of s when the change in volume must be limited to O.O28%; and (f) the required value of when the strain energy must be 38 in.-lb. (Assume £ = 14,000 ksi and v = 0.25.)
(a)

The normal stresses acting on the
Answer to Problem 7.6.5P
The normal stress acting on the
The normal stress acting on the
The normal stress acting on the
Explanation of Solution
Given information:
A cube of cast iron having side
Explanation:
Write the expression for the stress along
Here, the stress along
Write the expression for stress along
Here, stress along
Write the expression for stress along
Here, stress along
Calculation:
Substitute
Substitute
Substitute
Conclusion:
The normal stress acting on the
The normal stress acting on the
The normal stress acting on the
(b)

The maximum shear stress in the material.
Answer to Problem 7.6.5P
The maximum shear stress in the material is
Explanation of Solution
Write the expression for the shear stress in the
Here, the shear stress in
Write the expression for the shear stress in the
Here, the shear stress in
Write the expression for the shear stress in
Here, the shear stress in the
Calculation:
Substitute
Substitute
Substitute
From the above values of shear stresses, the maximum shear stress be
Therefore,
Conclusion:
The maximum shear stress in the material is
(c)

The change in the volume of the cube.
Answer to Problem 7.6.5P
The change in the volume is
Explanation of Solution
Write the expression for the total volumetric strain in the cube.
Here, the total volumetric strain in the cube is
Write the expression for the volume of cube.
Here, the volume of cube is
Write the expression for change in volume.
Here, the change in the volume is
Calculation:
Substitute
Substitute
Substitute
Conclusion:
The change in the volume is
(d)

The strain energy stored in the cube.
Answer to Problem 7.6.5P
The strain energy stored in the cube is
Explanation of Solution
Write the expression for the strain energy stored in the cube.
Here, the strain energy is
Calculation:
Substitute
Conclusion:
The strain energy stored in the cube is
(e)

The maximum value of normal stress along the
Answer to Problem 7.6.5P
The maximum value of normal stress along the
Explanation of Solution
Given information:
The change in volume is limited to
Explanation:
Write the expression for the change in volume.
Write the expression for the stress along
Calculation:
Substitute
Substitute
Conclusion:
The maximum value of normal stress along the
(f)

The required value of strain along the
Answer to Problem 7.6.5P
The required value of the strain along the
Explanation of Solution
Given information:
The strain energy of the system is
Explanation:
Write the expression for the strain energy.
Calculation:
Substitute
Now solve the quadratic equation for obtaining the value of
Conclusion:
The required value of the strain along the
Want to see more full solutions like this?
Chapter 7 Solutions
Mechanics of Materials (MindTap Course List)
- Determine the magnitudes of the reactions at the supports for this large plate.arrow_forwardOnly expert should solvearrow_forwardA 15 cm-OD pipe is buried with its centerline 1.25 m below the surface of the ground [k of soil is 0.35 W/(m K)]. An oil having a density of 800 kg/m³ and a specific heat of 2.1 kJ/(kg K) flows in the pipe at 5.6 L/s. Assuming a ground surface temperature of 5°C and a pipe wall temperature of 95°C, estimate the length of pipe in which the oil temperature decreases by 5.5°C. + Tε = 5ºC Z= 1.25 m D= 15 cm 7p=95°Carrow_forward
- Find the solution of the following Differential Equations 1) 4y+y=0, y(0)=2, y'(0) = 0. 2) y+y=0, y(0) = A, y'(0) = B. 3) "+2y'-8y=0, y(0)=1, y'(0)=8. 4) y"-2y-3y=0, y(0)=1, y'(0)=7. 5) y"-ky' =0, y(0)=2, y'(0) =k. 6) y+ky'-2k2y=0, y(0)=2, y'(0) = 2k. 7) y'+4y=0, y(0)=2.8 y+y-17sin(21) y(0)=-1. 9) y-y'-6y=0, y(0)=6. y'(0)=13. 10) y-y=0, 11) y"-4y+4y=0, y(0)=4, y'(0) = 0. y(0) = 2.1, y'(0)=3.9 12) y+2y+2y=0, y(0)=1, y'(0)=-3. 13) "+7y+12y=21e", y(0)=3.5, y'(0)=-10. 14) "+9y=10e", y(0)=0. y'(0) = 0. 15) y+3y+2.25y=91³ +64. y(0)=1, y'(0) = 31.5 16) "-6y+5y= 29 cos(21), y(0)=3.2, y'(0) = 6.2 17) y+2y+2y=0, y(0)=0, y'(0)=1. 18) y+2y+17y=0, y(0)=0, y'(0)=12. 19) y-4y+5y=0, y(0)-1, y'(0) 2. 20) 9y-6y+y=0. y(0)=3, y'(0)=1. 21) -2y+10y=0, y(0)=3, y'(0)=3. 22) 4y-4y+37y=0, (0) 3. y(0) 1.5 23) 4y-8y+5y=0, (0)-0, y(0) 1. 24) y+y+1.25y=0, y(0) 1. y'(0) -0.5 25) y+y=2 cos(1). y(0) 2. y'(0) = 0. 26) -4y+3y=0, (0)-3, y'(0) = 7. 27) y+2y+y=e", y(0)-0. y'(0) = 0. 29) 28) y+2y-3y-10sinh(2),…arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting appreciate your time and effort!. Question:arrow_forward4. Block A and B are two different pieces of wood. Determine the minimum dimension for "a", if the shear stress of the wood is 50Mpa. The thickness of the wood is 30cm. 600N Aarrow_forward
- 1. Determine the reaction force at A. 60 kN 5 B 1 m 1 m- -1 m 4 3 m 30 kN marrow_forwardFind the Laplace Transform of the following functions 1) f() cos(ar) Ans. F(s)=7 2ws 2) f() sin(at) Ans. F(s)= s² + a² 3) f(r)-rcosh(at) Ans. F(s)= 2as 4)(t)=sin(at) Ans. F(s)= 2 5) f(1) = 2te' Ans. F(s)= (S-1) 5+2 6) (1) e cos() Ans. F(s) = (+2)+1 7) (1) (Acostẞr)+ Bsin(Br)) Ans. F(s)- A(s+a)+BB (s+a)+B 8) f()-(-)() Ans. F(s)= 9)(1)(1) Ans. F(s): 10) f(r),()sin() Ans. F(s): 11) 2 k 12) 0 13) 0 70 ㄷ.. a 2a 3a 4a 2 3 4 14) f(1)=1, 0<1<2 15) (1) Ksin(t) 0arrow_forward2. Determine the average normal stress developed in rod AB. The mass is 50kg and the diameter of the rod AB is 8mm. B 8 mmarrow_forward2.64 A 2.75-kN tensile load is applied to a test coupon made from 1.6-mm flat steel plate (E = 200 GPa, v = 0.30). Determine the resulting change in (a) the 50-mm gage length, (b) the width of portion AB of the test coupon, (c) the thickness of portion AB, (d) the cross-sectional area of portion AB. 2.75 kN A 12 mm 50 mm B 2.75 kNarrow_forwardProcedure:1- Cartesian system, 2(D)/(3)D,type of support2- Free body diagram3 - Find the support reactions4- If you find a negativenumber then flip the force5- Find the internal force3D\sum Fx=0\sum Fy=0\sum Fz=0\sum Mx=0\sum My=0\Sigma Mz=02D\Sigma Fx=0\Sigma Fy=0\Sigma Mz=05- Use method of sectionand cut the elementwhere you want to findthe internal force andkeep either side of thesectionarrow_forward3. The design of a pump and pipe system has been completed, except for the valves. The system is used to transpor10t water at 120°F through 2 nom sch 40 commercial steel pipe at a required flow rate of 85 gpm. Without the valves, the pump selected has the capability to overcome an additional 18 psi of pressure drop due to the valves and still provide the required flow rate. The pipe/valve joints are threaded. Determine how many 2-inch globe valves can be installed in this pump and pipe system.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
