Mechanics of Materials (MindTap Course List)
9th Edition
ISBN: 9781337093347
Author: Barry J. Goodno, James M. Gere
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 7.7.19P
During a test of an airplane wing, the strain gage readings from a 45° rosette (see figure) are as follows: gage A, 520 × l0-6; gage B. 360 × l0-6; and gage C,-80 × 10-6.
Determine the principal strains and maximum shear strains, and show them on sketches of properly oriented elements.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Solve the following question
Solve it by yourself, do not copy from chegg!
4 of 4
(b) The 45° strain rosette is mounted on a steel shaft. The following readings are obtained
from each gauge are shown in Figure Q2(b).
i.
ii.
Ea = 800 x 106, & = 520 x 106 and & = -450 x 10-6
,
Find the strains values in the x-y directions and draw the strain element diagram of
that direction.
Find the principal strain values and draw the strain element diagram of that direction.
iii. Find the maximum shear strain value and draw the strain element diagram of that
direction.
iv.
If the properties of the structure have E = 208 GPa and v = 0.28, find the magnitude
of the principal stresses.
b
45°
45°
Figure Q2(b)[
[8 marks]
Chapter 7 Solutions
Mechanics of Materials (MindTap Course List)
Ch. 7 - An clement m plane stress from the frame of a...Ch. 7 - Solve the preceding problem for an element in...Ch. 7 - The stresses on an element are sx= 1000 Psi. sy=...Ch. 7 - .4 The stresses on an clement arc known to be sx=...Ch. 7 - The stresses acting on element A on the web of a...Ch. 7 - Solve the preceding problem if the stresses acting...Ch. 7 - The stresses acting on element B on the web of a...Ch. 7 - An element in plane stress on the fuselage of an...Ch. 7 - The stresses acting on element B (see figure part...Ch. 7 - Solve the preceding problem if the normal and...
Ch. 7 - The polyethylene liner of a settling pond is...Ch. 7 - Solve the preceding problem if the norm al and...Ch. 7 - Two steel rods are welded together (see figure):...Ch. 7 - Repeat the previous problem using ? = 50° and...Ch. 7 - A rectangular plate of dimensions 3.0 in. × 5.0...Ch. 7 - Solve the preceding problem for a plate of...Ch. 7 - A simply supported beam is subjected to point load...Ch. 7 - Repeat the previous problem using sx= 12 MPa.Ch. 7 - At a point on the surface of an elliptical...Ch. 7 - Solve the preceding problem for sx= 11 MPa and...Ch. 7 - An clement m plane stress from the frame of a...Ch. 7 - Solve the preceding problem for the element shown...Ch. 7 - : A gusset plate on a truss bridge is in plane...Ch. 7 - The surface of an airplane wing is subjected to...Ch. 7 - At a point on the web of a girder on an overhead...Ch. 7 - -26 A rectangular plate of dimensions 125 mm × 75...Ch. 7 - -27 A square plate with side dimension of 2 in. is...Ch. 7 - The stresses acting on an element are x= 750 psi,...Ch. 7 - Repeat the preceding problem using sx= 5.5 MPa....Ch. 7 - An element in plane stress is subjected to...Ch. 7 - -4. - An element in plane stress is subjected to...Ch. 7 - An element in plane stress is subjected to...Ch. 7 - The stresses acting on element A in the web of a...Ch. 7 - The normal and shear stresses acting on element A...Ch. 7 - An element in plane stress from the fuselage of an...Ch. 7 - -9The stresses acting on element B in the web of a...Ch. 7 - The normal and shear stresses acting on element B...Ch. 7 - ‘7.3-11 The stresses on an element are sx= -300...Ch. 7 - - 7.3-12 A simply supported beam is subjected to...Ch. 7 - A shear wall in a reinforced concrete building is...Ch. 7 - The state of stress on an element along the...Ch. 7 - -15 Repeat the preceding problem using ??. = - 750...Ch. 7 - A propeller shaft subjected to combined torsion...Ch. 7 - 3-17 The stresses at a point along a beam...Ch. 7 - -18 through 7.3-22 An element in plane stress (see...Ch. 7 - -18 through 7.3-22 An element in plane stress (see...Ch. 7 - -18 through 7.3-22 An element in plane stress (see...Ch. 7 - -18 through 7.3-22 An element in plane stress (see...Ch. 7 - -18 through 7.3-22 An element in plane stress (see...Ch. 7 - At a point on the web of a girder on a gantry...Ch. 7 - The stresses acting on a stress element on the arm...Ch. 7 - The stresses at a point on the down tube of a...Ch. 7 - An element in plane stress on the surface of an...Ch. 7 - A simply supported wood beam is subjected to point...Ch. 7 - A simply supported wood beam is subjected to point...Ch. 7 - Prob. 7.4.1PCh. 7 - .4-2 An element in uniaxial stress is subjected to...Ch. 7 - An element on the gusset plate in Problem 7.2-23...Ch. 7 - An element on the top surface of the fuel tanker...Ch. 7 - An element on the top surface of the fuel tanker...Ch. 7 - An element in biaxial stress is subjected to...Ch. 7 - • - 7.4-7 An element on the surface of a drive...Ch. 7 - - A specimen used in a coupon test has norm al...Ch. 7 - A specimen used in a coupon test is shown in the...Ch. 7 - The rotor shaft of a helicopter (see figure part...Ch. 7 - An element in pure shear is subjected to stresses...Ch. 7 - An clement in plane stress is subjected to...Ch. 7 - Prob. 7.4.13PCh. 7 - An clement in plane stress is subjected to...Ch. 7 - An clement in plane stress is subjected to...Ch. 7 - An clement in plane stress is subjected to...Ch. 7 - Prob. 7.4.17PCh. 7 - -18 through 7.4-25 An clement in plane stress is...Ch. 7 - -18 through 7.4-25 An clement in plane stress is...Ch. 7 - Prob. 7.4.20PCh. 7 - -18 through 7.4-25 An clement in plane stress is...Ch. 7 - Through 7.4-25 An clement in plane stress is...Ch. 7 - -18 through 7.4-25 An clement in plane stress is...Ch. 7 - through 7.4-25 An clement in plane stress is...Ch. 7 - -18 through 7.4-25 An clement in plane stress is...Ch. 7 - 1 A rectangular steel plate with thickness t = 5/8...Ch. 7 - Solve the preceding problem if the thickness of...Ch. 7 - The state of stress on an element of material is...Ch. 7 - An element of a material is subjected to plane...Ch. 7 - Assume that the normal strains x and y , for an...Ch. 7 - A cast-iron plate in biaxial stress is subjected...Ch. 7 - Solve the preceding problem for a steel plate with...Ch. 7 - • - 3 A rectangular plate in biaxial stress (see...Ch. 7 - Solve the preceding problem for an aluminum plate...Ch. 7 - A brass cube of 48 mm on each edge is comp ressed...Ch. 7 - 7.5-11 in. cube of concrete (E = 4.5 X 106 psi. v...Ch. 7 - -12 A square plate of a width h and thickness t is...Ch. 7 - Solve the preceding problem for an aluminum plate...Ch. 7 - A circle of a diameter d = 200 mm is etched on a...Ch. 7 - The normal stress on an elastomeric rubber pad in...Ch. 7 - A rubber sheet in biaxial stress is subjected to...Ch. 7 - An element of aluminum is subjected to tri-axial...Ch. 7 - An element of aluminum is subjected to tri- axial...Ch. 7 - -3 An element of aluminum in the form of a...Ch. 7 - Solve the preceding problem if the element is...Ch. 7 - A cube of cast iron with sides of length a = 4.0...Ch. 7 - Solve the preceding problem if the cube is granite...Ch. 7 - An element of aluminum is subjected to iriaxial...Ch. 7 - Prob. 7.6.8PCh. 7 - A rubber cylinder R of length L and cross-...Ch. 7 - A block R of rubber is confined between plane...Ch. 7 - -11 A rubber cube R of a side L = 3 in. and cross-...Ch. 7 - A copper bar with a square cross section is...Ch. 7 - A solid spherical ball of magnesium alloy (E = 6.5...Ch. 7 - A solid steel sphere (E = 210 GPa, v = 0.3) is...Ch. 7 - Prob. 7.6.15PCh. 7 - An element of material in plain strain has the...Ch. 7 - An clement of material in plain strain has the...Ch. 7 - An element of material in plain strain is...Ch. 7 - An element of material in plain strain is...Ch. 7 - A thin rectangular plate in biaxial stress is...Ch. 7 - Prob. 7.7.6PCh. 7 - A thin square plate in biaxial stress is subjected...Ch. 7 - Prob. 7.7.8PCh. 7 - An clement of material subjected to plane strain...Ch. 7 - Solve the preceding problem for the following...Ch. 7 - The strains for an element of material in plane...Ch. 7 - Solve the preceding problem for the following...Ch. 7 - An clement of material in plane strain (see...Ch. 7 - Solve the preceding problem for the following...Ch. 7 - A brass plate with a modulus of elastici ty E = 16...Ch. 7 - Solve the preceding problem if the plate is made...Ch. 7 - An element in plane stress is subjected to...Ch. 7 - Prob. 7.7.18PCh. 7 - During a test of an airplane wing, the strain gage...Ch. 7 - A strain rosette (see figure) mounted on the...Ch. 7 - A solid circular bar with a diameter of d = 1.25...Ch. 7 - A cantilever beam with a rectangular cross section...Ch. 7 - Solve the preceding problem if the cross-...Ch. 7 - A 600 strain rosette, or delta rosette, consists...Ch. 7 - On the surface of a structural component in a...Ch. 7 - - 7.2-26 The strains on the surface of an...Ch. 7 - Solve Problem 7.7-9 by using Mohr’s circle for...Ch. 7 - 7.7-28 Solve Problem 7.7-10 by using Mohr’s circle...Ch. 7 - Solve Problem 7.7-11 by using Mohr’s circle for...Ch. 7 - Solve Problem 7.7-12 by using Mohr’s circle for...Ch. 7 - Solve Problem 7.7-13 by using Mohr’s circle for...Ch. 7 - Prob. 7.7.32P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A strain rosette (see figure) mounted on the surface of an automobile frame gives the following readings: gage A,310 × 10-6:gage B,180 × l0-6; and gage C. -160 × 10-6. Determine the principal strains and maximum shear strains, and show them on sketches of properly oriented elements.arrow_forwardAn clement of material in plane strain (see figure) is subjected to strains ex= 480 × 10-6, Ey= 70 × l0-6, and yxy= 420 × l0-6. Determine the following quantities: (a) the strains for an element oriented at an angle 0 = 75°, (b) the principal strains, and (c) the maximum shear strains. Show the results on sketches of properly oriented elements.arrow_forwardThe strains for an element of material in plane strain (see figure) are as follows: x = 480 ×10-6. y = 140 × l0-6, and xy = —350 x 10”. Determine the principals strains and maximum shear strains, and show these strains on sketches of properly oriented elements.arrow_forward
- - 7.2-26 The strains on the surface of an experiment al device made of pure aluminum (E = 70 GPa. v = 0.33) and tested in a space shuttle were measured by means of strain gages. The gages were oriented as shown in the figure. and the measured strains were = 1100 X 106, h = 1496 X 10.6, and = 39.44 X l0_. What is the stress o in the x direction?arrow_forwardI am unsure of how to start this how do I solve this?arrow_forwardA 45° strain rosette (see figure) mounted onthe surface of an automobile frame gives the followingreadings: gage A, 310 X10-6 ; gage B, 180 X10-6 ;and gage C, -160X10 -6 .Determine the principal strains and maximumshear strains, and show them on sketches of properlyoriented elements.arrow_forward
- The 45° strain rosette shown in figure below is mounted on the surface of a thin shell. The following readings are obtained for each gage: ea, eb, and ec. Note that e, is negative. Determine: • Shear strain yay • Principal strains e1 and e2 • The rotation angle (magnitude and direction) from x-axis to reach the principal orientation. Indicate direction as clockwise or counter-clockwise. epsilon_a = 4.50E-04 epsilon_b = 2.00E-04 epsilon_c = -1.00E-04 y а b 45° 45°arrow_forwardTensile test specimens are extracted from the "X" and "y" directions of a rolled sheet of metal. "x" is the rolling direction, "y" is transverse to the rolling direction, and "z" is in the thickness direction. Both specimens were pulled to a longitudinal strain = 0.15 strain. For the sample in the x-direction, the width strain was measured to be ew= -0.0923 at that instant. For the sample in the y-direction, the width strain was measured to be gw=-0.1000 at that instant. The yield strength of the x-direction specimen was 50 kpsi and the yield strength of the y-direction specimen was 52 kpsi. Determine the strain ratio for the x direction tensile test specimen. Determine the strain ratio for the y-direction tensile test specimen. Determine the expected yield strength in the z-direction. Give your answer in units of kpsi (just the number). If the sheet is plastically deformed in equal biaxial tension (a, = 0, to the point where & = 0.15, calculate the strain, 6, that would be expected.arrow_forwardThe 45° strain rosette shown in figure below is mounted on the surface of a thin shell. The following readings are obtained for each gage: ea, eb, and ec .Note that Be is negative. Determine: • Shear strain yxy • Principal strains e1 and e2 · The rotation angle (magnitude and direction) from x-axis to reach the principal orientation. Indicate direction as clockwise or counter-clockwise. epsilon a = 4.50E-04 epsilon k= 2.00E-04 epsilons = -1.00E-04 %3D y а b 45° 45°arrow_forward
- An element of material is deformed as depicted in the figure. Assuming that the modulus of rigidity....arrow_forwarda) The deformations for a material element in plane deformation (see figure 1) are the following: εxx = 480 × 10−6, εyy = −450 × 10−6 and γxy = −350 × 10−6. Using Mohr's Circle, determine the principal strains and maximum shear strains, and make an appropriately oriented sketch. b) And solve the exercise for the following data: εxx = −1120 × 10−6, εyy = −430 × 10−6, and γxy = 780 × 10−6.arrow_forwardPart 1 A thin square plate PQRS is symmetrically deformed into the shape shown by the dashed lines in the figure. Assume d = 255 mm, d₁ = 256.1 mm, and d₂ = 253.6 mm. For the deformed plate, determine (a) the normal strain of diagonal QS. (b) the shear strain Yxy at corner P. d₂ Answer: dos d = i d₁ Undeformed Calculate the deformation of diagonal QS. R Deformed X mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Lec21, Part 5, Strain transformation; Author: Mechanics of Materials (Libre);https://www.youtube.com/watch?v=sgJvz5j_ubM;License: Standard Youtube License