Concept explainers
A 1.00-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Fig. P7.68a). The object has a speed of vi = 3.00 m/s when it makes contact with a light spring (Fig. P7.68b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Fig. P7.68c). The object is then forced toward the left by the spring (Fig. P7.68d) and continues to move in that direction beyond the spring’s unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Fig. P7.68e). Find (a) the distance of compression d, (b) the speed v at the unstretched position when the object is moving to the left (Fig. P7.68d), and (c) the distance D where the object comes to rest.
Figure P7.68
(a)
Distance of compression.
Answer to Problem 68P
The distance of compression is
Explanation of Solution
Write the energy conservation equation between second and third picture.
Here
Write the equation for change in kinetic energy,
Here
Write the equation for change in potential energy,
Here
The final kinetic energy zero as the final velocity zero. The initial elastic potential energy is also zero as the spring is not extended initially.
Write the equation for change in internal energy
Here
Substitute (II), (III) and (IV) in (I)
Conclusion:
Substitute
Then,
The distance of compression is
(b)
Speed at the un stretched position when the object is moving left.
Answer to Problem 68P
The speed is
Explanation of Solution
Write the energy conservation equation between picture two and four
Substitute (II) and (IV) in (VI)
Substitute
Rewrite (VIII) for
Conclusion:
Substitute
The speed is
(c)
The distance at which the object comes to rest.
Answer to Problem 68P
The distance is
Explanation of Solution
Consider the motion from picture two to five
Substitute
Rearrange (X) in terms of
Conclusion:
Substitute
The distance is
Want to see more full solutions like this?
Chapter 7 Solutions
Principles of Physics: A Calculus-Based Text
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University