Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 49P
(a)
To determine
Speed of the halfpipe at the bottom.
(b)
To determine
Amount of chemical potential energy converted into mechanical energy.
(c)
To determine
Distance covered above point D.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 3.0-kg mass is sliding on a horizontal frictionless surface with a speed of V=3.0 m/s when it
collides with a 1.0-kg mass initially at rest as shown in the figure. The masses stick together and slide up a
frictionless circular track of radius 0.40 m, as the drawing below shows. To what maximum height, h,
above the horizontal surface will the masses slide.
7.
040 m
A playground ride consists of a disk of mass M=48 kg and radius R=1.6 m mounted on a low-friction axle (see figure below). A child of mass m=22 kg runs at speed v=2.8 m/s on a line tangential to the disk and jumps onto the outer edge of the disk. What is the change in the kinetic energy of the child plus the disk?
A car of mass 2000 kg initially traveling northward turns west by following a circular
path, as shown in the figure. The radius of the path is 35.0-m and the car completes
the turn in 4.50 s. Assuming uniform speed motion, what is its speed at point B?
V
y
CB
20°1
0
Your Answer:
Answer
units
A
X
Question 17 (4 points)
A car of mass 2000 kg initially traveling northward turns west by following a circular
path, as shown in the figure. The radius of the path is 35.0-m and the car completes
the turn in 4.00 s. Assuming uniform speed motion. Which force below is
responsible for the car's turning motion?
y
0
B
20%
A
x
The driving force from the car's engine.
The kinetic frictional force between the ground and the wheels.
The supporting force from the ground.
The static frictional force between the ground and the wheels.
Chapter 7 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 7.1 - By what transfer mechanisms does energy enter and...Ch. 7.1 - Consider a block sliding over a horizontal surface...Ch. 7.2 - Prob. 7.3QQCh. 7.2 - Prob. 7.4QQCh. 7.4 - Prob. 7.5QQCh. 7 - You hold a slingshot at arms length, pull the...Ch. 7 - An athlete jumping vertically on a trampoline...Ch. 7 - Prob. 3OQCh. 7 - Two children stand on a platform at the top of a...Ch. 7 - Answer yes or no to each of the following...
Ch. 7 - A ball of clay falls freely to the hard floor. It...Ch. 7 - What average power is generated by a 70.0-kg...Ch. 7 - In a laboratory model of cars skidding to a stop,...Ch. 7 - At the bottom of an air track tilted at angle , a...Ch. 7 - One person drops a ball from the top of a building...Ch. 7 - Prob. 2CQCh. 7 - Does everything have energy? Give the reasoning...Ch. 7 - Prob. 4CQCh. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - A block is connected to a spring that is suspended...Ch. 7 - Consider the energy transfers and transformations...Ch. 7 - Prob. 9CQCh. 7 - Prob. 10CQCh. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Review. A bead slides without friction around a...Ch. 7 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 7 - A block of mass 0.250 kg is placed on top of a...Ch. 7 - A block of mass m = 5.00 kg is released from point...Ch. 7 - Two objects are connected by a light string...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - A crate of mass 10.0 kg is pulled up a rough...Ch. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - A block of mass m = 2.00 kg is attached to a...Ch. 7 - Prob. 16PCh. 7 - A smooth circular hoop with a radius of 0.500 m is...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - As shown in Figure P7.20, a green bead of mass 25...Ch. 7 - A 5.00-kg block is set into motion up an inclined...Ch. 7 - The coefficient of friction between the block of...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - A child of mass m starts from rest and slides...Ch. 7 - The electric motor of a model train accelerates...Ch. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Sewage at a certain pumping station is raised...Ch. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - A loaded ore car has a mass of 950 kg and rolls on...Ch. 7 - Prob. 42PCh. 7 - A certain automobile engine delivers 2.24 104 W...Ch. 7 - Prob. 44PCh. 7 - A small block of mass m = 200 g is released from...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Jonathan is riding a bicycle and encounters a hill...Ch. 7 - Prob. 54PCh. 7 - A horizontal spring attached to a wall has a force...Ch. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Make an order-of-magnitude estimate of your power...Ch. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Review. As a prank, someone has balanced a pumpkin...Ch. 7 - Review. The mass of a car is 1 500 kg. The shape...Ch. 7 - A 1.00-kg object slides to the right on a surface...Ch. 7 - A childs pogo stick (Fig. P7.69) stores energy in...Ch. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - A block of mass m1 = 20.0 kg is connected to a...Ch. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - A block of mass 0.500 kg is pushed against a...Ch. 7 - A pendulum, comprising a light string of length L...Ch. 7 - Jane, whose mass is 50.0 kg, needs to swing across...Ch. 7 - A roller-coaster car shown in Figure P7.82 is...Ch. 7 - Prob. 83P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A space probe is fired as a projectile from the Earths surface with an initial speed of 2.00 104 m/s. What will its speed be when it is very far from the Earth? Ignore atmospheric friction and the rotation of the Earth. P11.26 Ki+Ui=Kf+Uf12mvi2+GMEm(1rf1ri)=12mvf212vi2+GME(01RE)=12vf2orvf2=v122GMEREandvf=(v122GMERE)1/2,vf=[(2.00104)21.25108]1/2m/s=1.66104m/sarrow_forwardA giant swing at an amusement park consists of a 365-kg uniform arm 10.0 m long, with two seats of negligible mass connected at the lower end of the arm (Fig. P8.53). (a) How far from the upper end is the center of mass of the arm? (b) The gravitational potential energy of the arm is the same as if all its mass were concentrated at the center of mass. If the arm is raised through a 45.0 angle, find the gravitational potential energy, where the zero level is taken to be 10.0 m below the axis, (c) The arm drops from rest from the position described in part (b). Find the gravitational potential energy of the system when it reaches the vertical orientation. (d) Find the speed of the seats at the bottom of the swing.arrow_forwardA skateboarder with his board can be modeled as a particle of mass 76.0 kg, located at his center of mass (which we will study in Chapter 9). As shown in Figure P8.49, the skateboarder starts from rest in a crouch-ing position at one lip of a half-pipe (point ). The half-pipe is one half of a cylinder of radius 6.80 m with its axis horizontal. On his descent, the skateboarder moves without friction so that his center of mass moves through one quarter of a circle of radius 630 m. (a) Find his speed at the bottom of the half-pipe (point (b) Immediately after passing point he stands up and raises his arms, lifting his center of mass from 0.500 in to 0.950 m above the concrete (point ). Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.85 m. His body is horizontal when he passes point , the far lip of the half-pipe. As he passes through point , the speed of the skateboarder is 5.14 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy in the skateboarderEarth system when he stood up at point ? (c) How high above point does he rise? Caution: Do not try this stunt yourself without the required skill and protective equipment. Figure P8.49arrow_forward
- As shown in Figure P8.20, a bullet of mass m and speed v passes completely through a pendulum bob of mass M. The bullet emerges with a speed of v/2. The pendulum bob is suspended by a stiff rod (not a string) of length , and negligible mass. What is the minimum value of v such that the pendulum bob will barely swing through a complete vertical circle? Figure P8.20arrow_forwardTo give a pet hamster exercise, some people put the hamster in a ventilated ball andallow it roam around the house(Fig. P13.66). When a hamsteris in such a ball, it can cross atypical room in a few minutes.Estimate the total kinetic energyin the ball-hamster system. FIGURE P13.66 Problems 66 and 67arrow_forwardA cube with the dimensions bxbxb and a mass, m, lies on a horizontal surface. The cube is subjected to the force of gravity and the friction coefficient between the cube and the surface, mu. If the cube is sliding without rotation, and the initial impulse, F, is given, use the work-energy principle to determine the distance the cube travels.arrow_forward
- PLS HELParrow_forwardA 26 g block hangs from a 350 g rotating solid disk, as shown below. If the radius of the disk is12 cm, what is the speed of the block after it has dropped 55 cm starting from rest? If a disk with radius5.0 cm is used instead, how does your answer change?arrow_forwardYou are working with a team that is designing a new roller coaster–type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 250-kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 110-m tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 50.0 N acts from computer-controlled brakes. For the last 20 m, which is horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit. (a) Determine the required constant friction force for the last 20 m for the empty test car. (b) Find the highest speed reached by the car during the final section of track length 250 m. (c) You are…arrow_forward
- Q4: A thin uniform rod of mass Mr and length L is suspended from the ceiling and mounted on a horizontal frictionless axle at the top. The rod is initially at rest in its equilibrium position when a ball of play dough, of mass mb, strikes the rod at its lower end and remains stuck to the rod. The sticky ball is thrown with an initial speed v0 at a 60 degree angle from the horizontal direction, and strikes the rod when it reaches the top of its trajectory, as shown in Fig.4. The acceleration due to gravity has magnitude g and air resistance is negligible. a. Determine the velocity of the ball of play dough right before it sticks to the rod. Use the x- y coordinate system defined in Fig.4. b. Determine the angular velocity of the rod+ball system right after the collision. Take counterclockwise as positive. c. - Establish the differential equation satisfied by the rod+ball system after the collision and determine the angular frequency of the system. You may assume that the small…arrow_forwardWhile spinning down from 500.0 rpm to rest, a solid uniform disk does 51 KJ of work. If the radius of the disk is r=400mm what is it's mass?.arrow_forwardQIIII: A thin uniform rod of mass Mr and length L is suspended from the ceiling and mounted on a horizontal frictionless axle at the top. The rod is initially at rest in its equilibrium position when a ball of play dough, of mass mb, strikes the rod at its lower end and remains stuck to the rod. The sticky ball is thrown with an initial speed v0 at a 60 degree angle from the horizontal direction, and strikes the rod when it reaches the top of its trajectory, as shown in Fig.4. The acceleration due to gravity has magnitude g and air resistance is negligible. a. Determine the velocity of the ball of play dough right before it sticks to the rod. Use the x- y coordinate system defined in Fig.4. b. Determine the angular velocity of the rod+ball system right after the collision. Take counterclockwise as positive. c. - Establish the differential equation satisfied by the rod+ball system after the collision and determine the angular frequency of the system. You may assume that the small…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY