Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 38P
(a)
To determine
To determine: The number of times must the student run the flight of stairs to lose
(b)
To determine
To determine: The average power output in Watt and in horsepower, as he runs up the stairs.
(c)
To determine
To determine: Whether this activity in itself a practical way to lose weight.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
To enter the main pool at an amusement part, a swimmer uses a water slide which has a vertical height of 2.83 m. Find her speed at the bottom of the slide if she starts with an initial speed of 0.750 m/s.
at an amusement park, a swimmer uses a water slide to enter the main pool.the swimmer slides without friction, and descends through a vertical height of 2.49m.
find the swimmers speed at the bottom of the slide if she starts with an initial speed of 0.850m/s
Energy is conventionally measured in Calories as well as in joules. One Calorie in nutrition is one kilocalorie, defined as 1 kcal = 4 186 J. Metabolizing 1 g of fat can release 9.00 kcal. A student decides to try to lose weight by exercising. He plans to run up and down the stairs in a football stadium as fast as he can and as many times as necessary. To evaluate the program, suppose he runs up a flight of 80 steps, each 0.150 m high, in 65.0 s. For simplicity, ignore the energy he uses in coming down (which is small). Assume a typical efficiency for human muscles is 20.0%. This statement means that when your body converts 100 J from metabolizing fat, 20 J goes into doing mechanical work (here, climbing stairs). The remainder goes into extra internal energy. Assume the student’s mass is 75.0 kg. (a) How many times must the student run the flight of stairs to lose 1.00 kg of fat? (b) What is his average power output, in watts and in horsepower, as he runs up the stairs? (c) Is this…
Chapter 7 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 7.1 - By what transfer mechanisms does energy enter and...Ch. 7.1 - Consider a block sliding over a horizontal surface...Ch. 7.2 - Prob. 7.3QQCh. 7.2 - Prob. 7.4QQCh. 7.4 - Prob. 7.5QQCh. 7 - You hold a slingshot at arms length, pull the...Ch. 7 - An athlete jumping vertically on a trampoline...Ch. 7 - Prob. 3OQCh. 7 - Two children stand on a platform at the top of a...Ch. 7 - Answer yes or no to each of the following...
Ch. 7 - A ball of clay falls freely to the hard floor. It...Ch. 7 - What average power is generated by a 70.0-kg...Ch. 7 - In a laboratory model of cars skidding to a stop,...Ch. 7 - At the bottom of an air track tilted at angle , a...Ch. 7 - One person drops a ball from the top of a building...Ch. 7 - Prob. 2CQCh. 7 - Does everything have energy? Give the reasoning...Ch. 7 - Prob. 4CQCh. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - A block is connected to a spring that is suspended...Ch. 7 - Consider the energy transfers and transformations...Ch. 7 - Prob. 9CQCh. 7 - Prob. 10CQCh. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Review. A bead slides without friction around a...Ch. 7 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 7 - A block of mass 0.250 kg is placed on top of a...Ch. 7 - A block of mass m = 5.00 kg is released from point...Ch. 7 - Two objects are connected by a light string...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - A crate of mass 10.0 kg is pulled up a rough...Ch. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - A block of mass m = 2.00 kg is attached to a...Ch. 7 - Prob. 16PCh. 7 - A smooth circular hoop with a radius of 0.500 m is...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - As shown in Figure P7.20, a green bead of mass 25...Ch. 7 - A 5.00-kg block is set into motion up an inclined...Ch. 7 - The coefficient of friction between the block of...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - A child of mass m starts from rest and slides...Ch. 7 - The electric motor of a model train accelerates...Ch. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Sewage at a certain pumping station is raised...Ch. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - A loaded ore car has a mass of 950 kg and rolls on...Ch. 7 - Prob. 42PCh. 7 - A certain automobile engine delivers 2.24 104 W...Ch. 7 - Prob. 44PCh. 7 - A small block of mass m = 200 g is released from...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Jonathan is riding a bicycle and encounters a hill...Ch. 7 - Prob. 54PCh. 7 - A horizontal spring attached to a wall has a force...Ch. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Make an order-of-magnitude estimate of your power...Ch. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Review. As a prank, someone has balanced a pumpkin...Ch. 7 - Review. The mass of a car is 1 500 kg. The shape...Ch. 7 - A 1.00-kg object slides to the right on a surface...Ch. 7 - A childs pogo stick (Fig. P7.69) stores energy in...Ch. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - A block of mass m1 = 20.0 kg is connected to a...Ch. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - A block of mass 0.500 kg is pushed against a...Ch. 7 - A pendulum, comprising a light string of length L...Ch. 7 - Jane, whose mass is 50.0 kg, needs to swing across...Ch. 7 - A roller-coaster car shown in Figure P7.82 is...Ch. 7 - Prob. 83P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 50.0 kg cheetah accelerates from rest to its top speed of 30.3 m/s. (a) How much net work (in J) is required for the cheetah to reach its top speed? (b) One food Calorie equals 4186 J. How many Calories of net work are required for the cheetah to reach its top speed? Note: Due to inefficiencies in converting chemical energy to mechanical energy, the amount calculated here is only a fraction of the energy that must be produced by the cheetah's body.arrow_forwardWhile at a water park, Hunter tries the water slide. The starting point is 13.0 m above the ground. He pushes off with an initial speed of 2.5 m/s. If the slide is frictionless, how fast will Hunter be traveling at the bottom?arrow_forwardA typical human brain has a mass of 1.4 kg, which makes up about 2% of a person's mass. However, the brain requires 20% of the body's power consumption. In essence, the brain requires 10 times as much power as any other organ in the body. The average power output of the human brain is about 2.0 × 10¹ W. Assume that the brain's power output could be converted into mechanical work and calculate how high we could use this power to lift an apple (m = 0.20 kg) in one minute. Number pa Unitsarrow_forward
- For its size, the commonflea is one of the most accomplished jumpers in the animal world.A 2.0-mm-long, 0.50 mg flea can reach a height of 20 cm in a singleleap. Ignoring air drag, what is the takeoff speed of such a flea?arrow_forwardA 59.0 kg cheetah accelerates from rest to its top speed of 30.9 m/s. HINT (a) How much net work (in J) is required for the cheetah to reach its top speed? 28166 (b) One food Calorie equals 4186 J. How many Calories of net work are required for the cheetah to reach its top speed? Note: Due to inefficiencies in converting chemical energy to mechanical energy, the amount calculated here is only a fraction of the energy that must be produced by the cheetah's body. Cal Need Help? Read It Watch itarrow_forwardA water slide is constructed so that swimmers, starting from rest at the top of the slide, leave the end of the slide traveling horizontally. As the drawing shows, one person hits the water 5.00 m from the end of the slide in a time of 0.627 s after leaving the slide. Ignore friction and air resistance, find the height H in the drawing.arrow_forward
- A 64.0 kg cheetah accelerates from rest to its top speed of 30.7 m/s. HINT (a) How much net work (in J) is required for the cheetah to reach its top speed? (b) One food Calorie equals 4186 J. How many Calories of net work are required for the cheetah to reach its top speed? Note: Due to inefficiencies in converting chemical energy to mechanical energy, the amount calculated here is only a fraction of the energy that must be produced by the cheetah's body. Calarrow_forwardHow many times could a 70kg person jump rope with the energy contained in one serving of gummy bears? There are 130 calories per serving of gummy bears. Assume the gummy bear energy is converted completely to potential energy and that each jump is 10.0cm high. Calculate the potential energy per jump using PE = mgh where m is the mass of the person in kilograms, g is the gravitational acceleration constant 9.8m/s^2, and h is the height of each jump in meters. Recall that 1 Joule = 1kgm^2/s^2.arrow_forwardA 2.1 ✕ 103-kg car starts from rest at the top of a 5.3-m-long driveway that is inclined at 18° with the horizontal. If an average friction force of 4.0 ✕ 103 N impedes the motion, find the speed of the car at the bottom of the driveway. m/sarrow_forward
- I need help with this physics question #2arrow_forwardA 62 kg trampoline artist jumps upward from the top of a platform with a vertical speed of 4.5 m/s. How fast is he going as he lands on the trampoline, 2 m below?arrow_forwardGrug is a creature formed from the top of a Burrawang tree, standing ~1.25m tall. One day, Grug climbs a playground slide of 2.6 m height, and slides down its largely frictionless surface. The bottom of the slide is 69 cm above the ground. With what speed does Grug leave the slide? (Units: m/s)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY