Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 75P
(a)
To determine
To explain: Whether the work done by the exhaust gases on the airplane during some time interval equal to the change in the airplane’s kinetic energy.
(b)
To determine
To determine: The speed of the airplane after it has traveled
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A duck has a mass of 2.10 kg. As the duck paddles, a force of 0.140 N acts on it in a direction due east. In addition, the current of the
water exerts a force of 0.180 N in a direction of 57.0° south of east. When these forces begin to act, the velocity of the duck
is 0.100 m/s in a direction due east. Find (a) the magnitude and (b) the direction (relative to due east) of the displacement that the duck
undergoes in 3.80 s while the forces are acting. (Note that the angle will be negative in the south of east direction.)
A box of mass 10.2 kg is slid along the floor. The initial speed of the box is 2.5 m/s and it comes to rest after
8.1 m. What was the magnitude of the force of friction acting on the box during this motion? You must enter
you answer and include the SI units. (For example: 3.0kg)
A railroad car which has a mass 9216 kg is constrained to move along a horizontal track under the action of a wind blowing in the direction of the track. The frictional resistance to the car motion is 1/200 of its weight. The force exerted by wind is P=kSu2, where S is the area of the backside of the railroad car, equals to 6 m2, and u is the velocity of the wind relative to car, k=0.12. The absolute velocity of the wind is w=12 m/s. The initial velocity of the railroad car is 0. Determine:a) the maximum velocity vmax of the railroad car;b) the time T taken to reach this velocity;c) the distance x, travelled by the railroad car before reaching a velocity of 3 m/s
Chapter 7 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 7.1 - By what transfer mechanisms does energy enter and...Ch. 7.1 - Consider a block sliding over a horizontal surface...Ch. 7.2 - Prob. 7.3QQCh. 7.2 - Prob. 7.4QQCh. 7.4 - Prob. 7.5QQCh. 7 - You hold a slingshot at arms length, pull the...Ch. 7 - An athlete jumping vertically on a trampoline...Ch. 7 - Prob. 3OQCh. 7 - Two children stand on a platform at the top of a...Ch. 7 - Answer yes or no to each of the following...
Ch. 7 - A ball of clay falls freely to the hard floor. It...Ch. 7 - What average power is generated by a 70.0-kg...Ch. 7 - In a laboratory model of cars skidding to a stop,...Ch. 7 - At the bottom of an air track tilted at angle , a...Ch. 7 - One person drops a ball from the top of a building...Ch. 7 - Prob. 2CQCh. 7 - Does everything have energy? Give the reasoning...Ch. 7 - Prob. 4CQCh. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - A block is connected to a spring that is suspended...Ch. 7 - Consider the energy transfers and transformations...Ch. 7 - Prob. 9CQCh. 7 - Prob. 10CQCh. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Review. A bead slides without friction around a...Ch. 7 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 7 - A block of mass 0.250 kg is placed on top of a...Ch. 7 - A block of mass m = 5.00 kg is released from point...Ch. 7 - Two objects are connected by a light string...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - A crate of mass 10.0 kg is pulled up a rough...Ch. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - A block of mass m = 2.00 kg is attached to a...Ch. 7 - Prob. 16PCh. 7 - A smooth circular hoop with a radius of 0.500 m is...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - As shown in Figure P7.20, a green bead of mass 25...Ch. 7 - A 5.00-kg block is set into motion up an inclined...Ch. 7 - The coefficient of friction between the block of...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - A child of mass m starts from rest and slides...Ch. 7 - The electric motor of a model train accelerates...Ch. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Sewage at a certain pumping station is raised...Ch. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - A loaded ore car has a mass of 950 kg and rolls on...Ch. 7 - Prob. 42PCh. 7 - A certain automobile engine delivers 2.24 104 W...Ch. 7 - Prob. 44PCh. 7 - A small block of mass m = 200 g is released from...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Jonathan is riding a bicycle and encounters a hill...Ch. 7 - Prob. 54PCh. 7 - A horizontal spring attached to a wall has a force...Ch. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Make an order-of-magnitude estimate of your power...Ch. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Review. As a prank, someone has balanced a pumpkin...Ch. 7 - Review. The mass of a car is 1 500 kg. The shape...Ch. 7 - A 1.00-kg object slides to the right on a surface...Ch. 7 - A childs pogo stick (Fig. P7.69) stores energy in...Ch. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - A block of mass m1 = 20.0 kg is connected to a...Ch. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - A block of mass 0.500 kg is pushed against a...Ch. 7 - A pendulum, comprising a light string of length L...Ch. 7 - Jane, whose mass is 50.0 kg, needs to swing across...Ch. 7 - A roller-coaster car shown in Figure P7.82 is...Ch. 7 - Prob. 83P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two students are pushing crates across a frictionless floor. The crates are initially at rest. Bing applies a horizontal force of 13 N to his crate. Bob, who is taller than Bing, pushes on his crate at an angle of 53 degrees below the horizontal, also with a force of 13 N. Find the ratio of the masses of the two crates if Bing's crate is moving at twice the speed of Bob's crate after they have traveled a distance of 23.5 m across the floor?arrow_forwardYou bring a small remote controlled boat with a mass of 2.2kg to a small pond to rest it out. Starting from rest, you run the boat at full throttle for a little while. After the boat has traveled a distance of 11.8 meters, it is traveling with a speed of 7.5 m/s. If the forward force of thrust acting on the boat is 12.0 N, determine the magnitude of the backward force of "water resistance" acting on the boat.arrow_forwardA space probe of mass 5.00 x 104 kg is traveling at 1.10 x 104 m/s through deep space. No forces act on the probe except that generated by its own engine. No forces act on the probe except that generated by its own engine. The engine exerts a constant external force of 4.00 x 105 N, directed parallel to the displacement, which is 2.50 x 106 m. Determine the final velocity of the probe.arrow_forward
- For sport, a 12 kg armadillo runs onto a large pond of level, frictionless ice. The armadillo’s initial velocity is 5.0 m/s along the positive direction of an x axis.Take its initial position on the ice as being the origin. It slips over the ice while being pushed by a wind with a force of 17 N in the positive direction of the y axis. In unitvector notation, what are the animal’s (a) velocity and (b) position vector when it has slid for 3.0 s?arrow_forwardThe force on an object moving through a viscous fluid (like honey) is F = -bv, where v is the speed of the object. What are the SI units of b? O kg/s kg/s² kg/m O kg/m² O kg/m · s O none of thesearrow_forwardA swimmer has just jumped off a diving board. The swimmer has a mass of m = 56.4 kg and jumps off a board that is h = 7.15 m above the water. Exactly T = 4.1 seconds after entering the water, her downward motion is stopped. a) Write an expression for the magnitude of the average upward force Fw exerted on her by the water in terms of the variables given in the problem statement and g (9.80 m/s2). b) What is the magnitude of the average upward force Fw (in N) exerted on her by the water?arrow_forward
- 49. Show that Equation 15.32 is a solution of Equation 15.31 provided that b2< 4mk. One common type of retarding force is that discussed in Section 6.4, where the force is proportional to the speed of the moving object and acts in the direc- tion opposite the velocity of the object with respect to the medium. This retarding force is often observed when an object moves through air, for instance. Because the retarding force can be expressed as R = -bv (where bis a constant called the damping coefficient) and the restoring force of the system is -kx, we can write New- ton's second law as SF,= -kx - bv, = ma, dx d'x -kx - b = m (15.31) dt di" The solution to this equation requires mathematics that may be unfamiliar to you; we simply state it here without proof. When the retarding force is small compared with the maximum restoring force-that is, when the damping coefficient b is small-the solution to Equation 15.31 is x = Ae 2w cos (ot + o) (15.32)arrow_forwardA block of mass 13 kg is given an initial speed of 12 m/s, after which it slides across a horizontal floor for a distance of 18 meters before kinetic friction alone brings it to rest. The coefficient of kinetic friction between the block and the floor is 0.52 O 0.41 O 0.12 0.24 0.36 OOOOarrow_forwardA drone is being directed across a frictionless ice covered lake. The mass of the drone is 1.50 kg, and its velocity is 3.00i ^ m/s . After 10.0 s, the velocity is 9.00i ^ + 4.00j ^ m/s . If a constant force in the horizontal direction is causing this change in motion, find (a) the components of the force and (b) the magnitude of the force.arrow_forward
- A Chinook salmon can swim underwater at 3.58 m/s, and it can also jump vertically upward, leaving the water with a speed of 6.26 m/s. A record salmon has length 1.50 m and mass 61.0 kg. Consider the fish swimming straight upward in the water below the surface of a lake. The gravitational force exerted on it is very nearly canceled out by a buoyant force exerted by the water. The fish experiences an upward force P exerted by the water on its threshing tail fin and a downward fluid friction force that we model as acting on its front end. Assume the fluid friction force disappears as soon as the fish’s head breaks the water surface and assume the force on its tail is constant. Model the gravitational force as suddenly switching full on when half the length of the fish is out of the water. Find the value of P.arrow_forwardA block with a mass of m = 12 kg rests on a frictionless surface and is subject to two forces acting on it. The first force is directed in the negative x-direction with a magnitude of F1 = 10.5 N. The second has a magnitude of F2 = 19 N and acts on the body at an angle θ = 21° measured from horizontal 1. Write an expression for the component of net force, Fnet,x, in the x-direction, in terms of the variables given in the problem statement. 2. Write an expression for the magnitude of the normal force, FN, acting on the block, in terms of F2, g, and the other variables of the problem. Assume that the surface it rests on is rigid. 3. Find the block's acceleration in the x-direction, ax, in meters per second squared.arrow_forwardYou are pulling your younger sister along in a small wheeled cart. You weigh 65.0 kg and the combined mass of your sister and the cart is 35.0 kg. You are pulling the cart via a short rope which you pull horizontally. You hold one end of the rope and your sister holds the other end. If you are accelerating at a rate of 0.10 m s−2, the rope is inelastic, and the frictional force acting upon the cart is 30 N: a) What is the tension in the rope? (b) What force are you applying to the ground in order to produce this acceleration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY