Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 48P
(a)
To determine
Length of the cord.
(b)
To determine
Maximum acceleration experienced.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sky diver plans to bungee jump from a tower 74.0 m above the ground. She plans to use a uniform elastic cord, tied to a harness around
her body, to stop her fall at a point 11.0 m above the water. Model her body as a particle and the cord as having negligible mass and
obeying Hooke's law. In a preliminary test she finds that when hanging at rest from a 5.00 m length of the cord, her body weight stretches
it by 1.25 m. She will drop from rest at the point where the top end of a longer section of the cord is attached to the tower.
(a) What length of cord should she use?
m
(b) What maximum acceleration will she experience?
m/s²
A daredevil wishes to bungee-jump from a hot-air balloon 64.5 m above a carnival midway. He will use a piece of uniform elastic cord tied to a harness around his body to stop his fall at a point 12.0 m above the ground. Model his body as a particle and the cord as having negligible mass and a tension force described by Hooke's force law. In a preliminary test, hanging at rest from a 5.00-m length of the cord, the jumper finds that his body weight stretches it by 1.65 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the stationary balloon.
(a) What length of cord should he use? m(b) What maximum acceleration will he experience? m/s2
You are working with a team that is designing a new roller coaster–type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 250-kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 110-m tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 50.0 N acts from computer-controlled brakes. For the last 20 m, which is horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit. (a) Determine the required constant friction force for the last 20 m for the empty test car. (b) Find the highest speed reached by the car during the final section of track length 250 m. (c) You are…
Chapter 7 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 7.1 - By what transfer mechanisms does energy enter and...Ch. 7.1 - Consider a block sliding over a horizontal surface...Ch. 7.2 - Prob. 7.3QQCh. 7.2 - Prob. 7.4QQCh. 7.4 - Prob. 7.5QQCh. 7 - You hold a slingshot at arms length, pull the...Ch. 7 - An athlete jumping vertically on a trampoline...Ch. 7 - Prob. 3OQCh. 7 - Two children stand on a platform at the top of a...Ch. 7 - Answer yes or no to each of the following...
Ch. 7 - A ball of clay falls freely to the hard floor. It...Ch. 7 - What average power is generated by a 70.0-kg...Ch. 7 - In a laboratory model of cars skidding to a stop,...Ch. 7 - At the bottom of an air track tilted at angle , a...Ch. 7 - One person drops a ball from the top of a building...Ch. 7 - Prob. 2CQCh. 7 - Does everything have energy? Give the reasoning...Ch. 7 - Prob. 4CQCh. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - A block is connected to a spring that is suspended...Ch. 7 - Consider the energy transfers and transformations...Ch. 7 - Prob. 9CQCh. 7 - Prob. 10CQCh. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Review. A bead slides without friction around a...Ch. 7 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 7 - A block of mass 0.250 kg is placed on top of a...Ch. 7 - A block of mass m = 5.00 kg is released from point...Ch. 7 - Two objects are connected by a light string...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - A crate of mass 10.0 kg is pulled up a rough...Ch. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - A block of mass m = 2.00 kg is attached to a...Ch. 7 - Prob. 16PCh. 7 - A smooth circular hoop with a radius of 0.500 m is...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - As shown in Figure P7.20, a green bead of mass 25...Ch. 7 - A 5.00-kg block is set into motion up an inclined...Ch. 7 - The coefficient of friction between the block of...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - A child of mass m starts from rest and slides...Ch. 7 - The electric motor of a model train accelerates...Ch. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Sewage at a certain pumping station is raised...Ch. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - A loaded ore car has a mass of 950 kg and rolls on...Ch. 7 - Prob. 42PCh. 7 - A certain automobile engine delivers 2.24 104 W...Ch. 7 - Prob. 44PCh. 7 - A small block of mass m = 200 g is released from...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Jonathan is riding a bicycle and encounters a hill...Ch. 7 - Prob. 54PCh. 7 - A horizontal spring attached to a wall has a force...Ch. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Make an order-of-magnitude estimate of your power...Ch. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Review. As a prank, someone has balanced a pumpkin...Ch. 7 - Review. The mass of a car is 1 500 kg. The shape...Ch. 7 - A 1.00-kg object slides to the right on a surface...Ch. 7 - A childs pogo stick (Fig. P7.69) stores energy in...Ch. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - A block of mass m1 = 20.0 kg is connected to a...Ch. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - A block of mass 0.500 kg is pushed against a...Ch. 7 - A pendulum, comprising a light string of length L...Ch. 7 - Jane, whose mass is 50.0 kg, needs to swing across...Ch. 7 - A roller-coaster car shown in Figure P7.82 is...Ch. 7 - Prob. 83P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardA horizontal spring with spring constant 290 N/m is compressed by 15 cm and then used to launch a 300 g box across the floor. The coefficient of kinetic friction between the box and the floor is 0.23. What is the box's launch speed? Express your answer with the appropriate units.arrow_forwardA student with mass m=60kg is bungee jumping. What would be a proper length of a rope if the student plans to jump from a bridge (h=70 m)? It is known that under a static test with a 100 kg test mass that this brand of rope expands by 10m.arrow_forward
- A gymnast of mass 52.0 kg is jumping on a trampoline. She jumps so that her feet reach a maximum height of 3.12 m above the trampoline and, when she lands, her feet stretch the trampoline 70.0 cm down. How far does the trampoline stretch whe she stands on it at rest? Assume that the trampoline is described by Hooke's law when it is strecthed.arrow_forwardA block falls from a table 6 m high. It lands on an ideal, massless, vertical spring with a force constant of 2.4 kN/m. The spring is initially 25 cm high, but it is compressed to a minimum height of 10 cm before the block is stopped. Find the mass of the block.arrow_forwardA 2.0 kg block is pushed against a horizontal spring compressing the spring by 15 cm. When the block is released it slides 75 cm along a horizontal surface and comes to a rest. If the spring constant is 200 N/m, what is the coefficient of friction between the block and the table. Use g = 9.8 N/kg.arrow_forward
- You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 210 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 103 m tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 350 N acts from computer-controlled brakes. For the last 20 m, which is horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit. (a) Determine the required constant friction force (in N) for the last 20 m for the empty test car. N (b) Find the highest speed (in m/s) reached by the car during the final section of track length…arrow_forwardThe 1.1 kgkg physics book in figure is connected by a string to a 550 gg coffee cup. The book is given a push up the slope and released with a speed of 2.9 m/sm/s . The coefficients of friction are μsμs =0.50=0.50 and μkμk =0.20=0.20.(Figure 1) How far does the book slide? Express your answer with the appropriate units.arrow_forwardA gymnast of mass 52.0 kg is jumping on a trampoline. She jumps so that her feet reach maximum height of 2.49 m above the trampoline and, when she lands, her feet stretch the trampoline 68.0 cm down. How far does the trampoline stretch when she stands on it at rest? Assume that the trampoline is described by Hooke's law when it is stretched. Give your answer in cm.arrow_forward
- The massless spring of a spring gun has a force constant k = 0.04 N/cm. When the gun is aimed vertically, a 40 g projectile is shot to a height of 5.0 m above the end of the expanded spring. (See below.) How much was the spring compressed initially? (Find d, in meters.)arrow_forwardAn M = 22.4 kg sled slides on a rough horizontal ground. The sled hits a spring when it is traveling with a horizontal velocity of vi = 12.3 m/s. The sled compresses the spring at a distance of x = 2.12 m before coming to rest. If the force constant of the spring is k = 550 N/m, find the effective coefficient of kinetic friction, μk, between the sled and the groundarrow_forwardA 5.8 × 105 kg train is brought to a stop from a speed of 0.85 m/s in 0.57 m by a large spring bumper at the edge of its track. What is the force constant k of the spring in N/m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY