Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 78P

(a)

To determine

To show: The gravitational potential energy of the person–Earth system as a function of the person’s variable height y above the ground.

(a)

Expert Solution
Check Mark

Answer to Problem 78P

 The gravitational potential energy of the person–Earth system as a function of the person’s variable height y above the ground is 627.2y.

Explanation of Solution

Given info: The mass of the person is 64.0kg, height of the hot air balloon above the ground is 65.0m, the length of bungee cord is 25.8m, and spring constant of bungee cord is 81.0N/m.

The acceleration due to gravity is 9.8m/s2.

The expression for gravitational potential energy is as follows:

U=mgy

Here,

m is the mass.

g is the acceleration due to gravity.

y is the height.

Substitute 64.0kg for m and 9.8m/s2 for g in the above expression.

U=64.0×9.8×y=627.2×y

Conclusion:

Therefore, the gravitational potential energy of the person–Earth system as a function of the person’s variable height y above the ground is 627.2y.

(b)

To determine

To show: Elastic potential energy of cord as a function of y.

(b)

Expert Solution
Check Mark

Answer to Problem 78P

 The elastic potential energy of cord as a function of y is y23.17×103y+6.22×104.

Explanation of Solution

Given info: The mass of the person is 64.0kg, height of the hot air balloon above the ground is 65.0m, the length of bungee cord is 25.8m, and spring constant of bungee cord is 81.0N/m.

The expression for elastic potential energy of spring is as follows:

Us=12kx2 (1)

k is spring constant.

x is the extension in spring.

The cord will stretch by length x only when the person falls more than the length of the cord. Now, the height of the balloon h should be more than the length of the cord l plus the person’s height y, for safe landing.

The expression for extension in spring is as follows:

x=hly

Here,

h is height of the balloon.

l is the length of cord.

y is person’s height

Substitute 65.0m for h and 25.8m for l in the above expression.

x=65.025.8y=39.2y

Substitute 39.2my for x and 81.0N/m for k in Equation (1).

Us=12(81.0)(39.2y)2

Conclusion:

Therefore, the elastic potential energy of the cord as function of y is 12(81.0)(39.2y)2.

(c)

To determine

To show: The total potential energy of the person-cord–Earth system as a function of y.

(c)

Expert Solution
Check Mark

Answer to Problem 78P

 The total potential energy of the person-cord–Earth system as a function of y is 627.2×y+y212(81.0)(39.2y)2.

Explanation of Solution

Given info: The mass of the person is 64.0kg, height of the hot air balloon above the ground is 65.0m, the length of bungee cord is 25.8m, and spring constant of bungee cord is 81.0N/m.

The expression for total potential energy of the person-cord–Earth system is as follows:

UT=U+Us

Substitute 627.2N×y for U and y23.17×103y+6.22×104 for Us in the above expression.

UT=627.2×y+y212(81.0)(39.2y)2

Conclusion:

Therefore, the total potential energy of the person-cord–Earth system as a function of y is 627.2×y+y212(81.0)(39.2y)2.

(d)

To determine

To draw: The graph of gravitational, elastic, and total potential energies as a function of y.

(d)

Expert Solution
Check Mark

Answer to Problem 78P

 The graph of gravitational, elastic, and total potential energies as a function of y is given below.

Explanation of Solution

Introduction:

The gravitational potential energy above the surface of the earth is directly proportional to the height of the object.

The elastic potential energy is proportional to the square of displacement.

The total potential energy is the sum of all the potential energies in the system.

Given info: The mass of the person is 64.0kg, height of the hot air balloon above the ground is 65.0m, the length of bungee cord is 25.8m, and spring constant of bungee cord is 81.0N/m.

From part (a), the expression for gravitational potential energy of person as a function of y is given below:

U=627.2×y.

Table for the above expression is shown below:

y(m)U(kJ)
00
106.27
2012.54
3018.81
4025.08
5031.36
6037.6

The graph of gravitational potential energy with displacement is shown below:

Principles of Physics: A Calculus-Based Text, Chapter 7, Problem 78P , additional homework tip  1

Figure(1)

From part (a), the expression for the elastic potential energy of cord as a function of y is as follows:

Us=12(81.0)(39.2y)2.

The value of elastic potential energy of the cord remains zero till the person does not fall

equal to the length of cord; therefore, the value of the above equation is zero for y, which is greater than 39.2m.

Table for the above expression is shown below:

y(m)Us(kJ)
062.23
1034.53
2014.93
303.43
400
500
600

The graph of elastic potential energy with displacement is represented below:

Principles of Physics: A Calculus-Based Text, Chapter 7, Problem 78P , additional homework tip  2

Figure(2)

From part (a), the expression for total potential energy of the person-cord–Earth system as a function of y is as follows:

UT=627.2×y+12(81.0)(39.2y)2.

When the value of y is greater than 39.2m, the value of elastic potential energy in the above expression is zero.

Table for the above expression is shown below:

y(m)UT(kJ)
062.23
1040.8
2027.47
3022.24
4025.08
5031.36
6037.6

The graph of total potential energy with displacement is represented below:

Principles of Physics: A Calculus-Based Text, Chapter 7, Problem 78P , additional homework tip  3

Figure(3)

(e)

To determine

 The minimum height of the person above the ground during his plunge.

(e)

Expert Solution
Check Mark

Answer to Problem 78P

 The minimum height of the person above the ground during his plunge is 19.8m.

Explanation of Solution

Given info: The mass of the person is 64.0kg, height of the hot air balloon above the ground is 65.0m, the length of bungee cord is 25.8m, and spring constant of bungee cord is 81.0N/m.

The expression for change in total energy is as follows:

ΔU+ΔUs+ΔUk=0

Here,

ΔU is the change in gravitational potential energy.

ΔUs is the change in elastic potential energy.

ΔUk is the change in kinetic energy.

The value of initial kinetic energy is zero, as the person is at rest.

The length of cord is 25.8m; therefore, the length of cord is subtracted from the height of the balloon.

Substitute mg(65y) for ΔU and 12k(39.2y)2 for ΔUs in the above expression.

mg(65y)+12k(39.2y)2+ΔUk=0

At minimum height above the ground during plunge, the person comes to rest and the change in kinetic energy is zero, as both values of initial and final kinetic energies are zero.

Substitute 0 for ΔUk in the above expression.

mg(65y)+12k(39.2y)2+0=012ky2+(mgk39.2)y+12k(39.2)265mg=0

The expression for the roots of the above quadratic equation is as follows:

h=k39.2mg±(mgk39.2)24(12k)(12k(39.2)265mg)k

Substitute 64.0kg for m, 9.8m/s2 for g, and 81.0N/m for k  in the above expression.     h=(81.0N/m)39.2(64.0kg)(9.8m/s2)±((81.0N/m)39.2(64.0kg)(9.8m/s2))24(12×81.0N/m)(12(81.0N/m)(39.2)265(64.0kg)(9.8m/s2))(81.0N/m)=19.8m

Conclusion:

Therefore, the minimum height of the person above the ground during his plunge is 19.8m.

(f)

To determine

 Whether potential energy graph shows any equilibrium position and if so the elevation of equilibrium position, whether the equilibrium points are stable or unstable.

(f)

Expert Solution
Check Mark

Answer to Problem 78P

 The potential energy graph shows that in an equilibrium position at an elevation of 31.46m, the equilibrium position is unstable.

Explanation of Solution

Given info: The mass of the person is 64.0kg, height of the hot air balloon above the ground is 65.0m, the length of bungee cord is 25.8m, and the spring constant of bungee cord is 81.0N/m.

The graph of potential energy shows the equilibrium position at the place where the value of total potential energy is minimum.

The expression for total potential energy is as follows:

UT=627.2×y+12(81.0)(39.2y)2

Derive the above equation with the height of the person.

dUTdy=627.2(81.0)(39.2y)

For the expression of minima, equate the above expression equal to zero.

dUTdy=627.2(81.0)(39.2y)=0y=31.46m

The elevation at the point of equilibrium is 31.46m.

The person could not stop at the elevation of equilibrium position as he has kinetic energy that does not allow the person to stay at the elevation of equilibrium position. The equilibrium position is unstable.

Conclusion:

Therefore, the potential energy graph shows that in an equilibrium position at an elevation of 31.46m, the equilibrium position is unstable.

(g)

To determine

 The jumper’s maximum speed.

(g)

Expert Solution
Check Mark

Answer to Problem 78P

 The jumper’s maximum speed is 24.12m/s.

Explanation of Solution

Given info: The mass of the person is 64.0kg, height of the hot air balloon above the ground is 65.0m, the length of bungee cord is 25.8m, and the spring constant of bungee cord is 81.0N/m.

The expression for change in total energy is as follows:

ΔU+ΔUs+ΔUk=0

Substitute mg(65y) for ΔU  and 12k(39.2y)2 for ΔUs in the above expression.

mg(65y)+12k(39.2y)2+ΔUk=0ΔUk=mg(65y)12k(39.2y)2 (2)

The initial kinetic energy of the jumper is zero; hence, the change in the kinetic energy equals the kinetic energy at that position. Velocity is directly proportional to the square root of the kinetic energy; therefore, for maximum value of kinetic energy, the velocity is maximum.

Differentiate the above expression with respect to y.

dΔUkdy=mg+k(39.2y)

Equate dΔUkdy equal to 0 .

dΔUkdy=0

Substitute mg+k(39.2y) for dΔUkdy in the above expression.

mg+k(39.2y)=0y=39.2mgk

Substitute 64.0kg for m, 9.8m/s2 for g, and 81.0N/m for k in the above expression.

y=39.2m(64.0kg)(9.8m/s2)(81.0N/m)=31.46m

The height at which the velocity is maximum is 31.46m.

Substitute 64.0kg for m, 9.8m/s2 for g, 81.0N/m for k, and 31.46m for y in Equation (2).

ΔUk=(64.0kg)(9.8m/s2)(65m31.46m)12(81.0N/m)(39.231.46m)2=18610J

Substitute 12mv2 for ΔUk in the above expression.

12mv2=18610Jv=2×18610m

Substitute 64.0kg for m in the above expression.

v=2×18610J64.0kg=24.12m/s

Conclusion:

Therefore, the jumper’s maximum speed is 24.12m/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Ο
Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures.                                     Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.     PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25

Chapter 7 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 7 - A ball of clay falls freely to the hard floor. It...Ch. 7 - What average power is generated by a 70.0-kg...Ch. 7 - In a laboratory model of cars skidding to a stop,...Ch. 7 - At the bottom of an air track tilted at angle , a...Ch. 7 - One person drops a ball from the top of a building...Ch. 7 - Prob. 2CQCh. 7 - Does everything have energy? Give the reasoning...Ch. 7 - Prob. 4CQCh. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - A block is connected to a spring that is suspended...Ch. 7 - Consider the energy transfers and transformations...Ch. 7 - Prob. 9CQCh. 7 - Prob. 10CQCh. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Review. A bead slides without friction around a...Ch. 7 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 7 - A block of mass 0.250 kg is placed on top of a...Ch. 7 - A block of mass m = 5.00 kg is released from point...Ch. 7 - Two objects are connected by a light string...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - A crate of mass 10.0 kg is pulled up a rough...Ch. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - A block of mass m = 2.00 kg is attached to a...Ch. 7 - Prob. 16PCh. 7 - A smooth circular hoop with a radius of 0.500 m is...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - As shown in Figure P7.20, a green bead of mass 25...Ch. 7 - A 5.00-kg block is set into motion up an inclined...Ch. 7 - The coefficient of friction between the block of...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - A child of mass m starts from rest and slides...Ch. 7 - The electric motor of a model train accelerates...Ch. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Sewage at a certain pumping station is raised...Ch. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - A loaded ore car has a mass of 950 kg and rolls on...Ch. 7 - Prob. 42PCh. 7 - A certain automobile engine delivers 2.24 104 W...Ch. 7 - Prob. 44PCh. 7 - A small block of mass m = 200 g is released from...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Jonathan is riding a bicycle and encounters a hill...Ch. 7 - Prob. 54PCh. 7 - A horizontal spring attached to a wall has a force...Ch. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Make an order-of-magnitude estimate of your power...Ch. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Review. As a prank, someone has balanced a pumpkin...Ch. 7 - Review. The mass of a car is 1 500 kg. The shape...Ch. 7 - A 1.00-kg object slides to the right on a surface...Ch. 7 - A childs pogo stick (Fig. P7.69) stores energy in...Ch. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - A block of mass m1 = 20.0 kg is connected to a...Ch. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - A block of mass 0.500 kg is pushed against a...Ch. 7 - A pendulum, comprising a light string of length L...Ch. 7 - Jane, whose mass is 50.0 kg, needs to swing across...Ch. 7 - A roller-coaster car shown in Figure P7.82 is...Ch. 7 - Prob. 83P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY