Essential Organic Chemistry, Global Edition
Essential Organic Chemistry, Global Edition
3rd Edition
ISBN: 9781292089034
Author: Paula Yurkanis Bruice
Publisher: PEARSON
Question
Book Icon
Chapter 6.5, Problem 9P

(a)

Interpretation Introduction

Interpretation:

The number of transition states present in acid catalyzed reaction of alkene has to be determined.

Concept introduction:

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

First step is the acid donates proton to the alkene which leads to the formation of more stable carbo cation.

Then, the water is added to the given alkene through acid catalyzed reaction where the water gets added to the carbo cation finally, the removal of one proton from oxonium ion (oxygen with one positive charge) using water results in the formation of product.

Rate determining step: In a chemical reaction the rate determining step is the slowest step in which the rate of the reaction depends on the rate of that slowest step.

Activation energy: It is defined as the minimum energy required by the reacting species in order to undergo chemical reaction.

Intermediate species: It is the species formed during the middle of the chemical reaction between the reactant and the desired product.

Transition State: The state which defines the highest potential energy with respect to reaction co-ordinate between reactant and product. It is usually denoted by using the symbol ‘≠’.

Rate constant: The rate constant for a chemical reaction is the proportionality term in the chemical reaction rate law which gives the relationship between the rate and the concentration of the reactant present in the chemical reaction.

(b)

Interpretation Introduction

Interpretation:

The number of intermediate present in the given reaction has to be determined.

Concept introduction:

Rate determining step: In a chemical reaction the rate determining step is the slowest step in which the rate of the reaction depends on the rate of that slowest step.

Activation energy: It is defined as the minimum energy required by the reacting species in order to undergo chemical reaction.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

First step is the acid donates proton to the alkene which leads to the formation of more stable carbo cation.

Then, the water is added to the given alkene through acid catalyzed reaction where the water gets added to the carbo cation finally, the removal of one proton from oxonium ion (oxygen with one positive charge) using water results in the formation of product.

Intermediate species: It is the species formed during the middle of the chemical reaction between the reactant and the desired product.

Transition State: The state which defines the highest potential energy with respect to reaction co-ordinate between reactant and product. It is usually denoted by using the symbol ‘≠’.

(c)

Interpretation Introduction

Interpretation:

The step with smallest rate constant has to be determined.

Concept introduction:

Rate determining step: In a chemical reaction the rate determining step is the slowest step in which the rate of the reaction depends on the rate of that slowest step.

Activation energy: It is defined as the minimum energy required by the reacting species in order to undergo chemical reaction.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

First step is the acid donates proton to the alkene which leads to the formation of more stable carbo cation.

Then, the water is added to the given alkene through acid catalyzed reaction where the water gets added to the carbo cation finally, the removal of one proton from oxonium ion (oxygen with one positive charge) using water results in the formation of product.

Intermediate species: It is the species formed during the middle of the chemical reaction between the reactant and the desired product.

Transition State: The state which defines the highest potential energy with respect to reaction co-ordinate between reactant and product. It is usually denoted by using the symbol ‘≠’.

Blurred answer
Students have asked these similar questions
should the student use if the above enzymatic process works at 65% efficies recovery yield is 80%? a. 180 g b. 119 g c. 282 g 75. Draw structure for (S,E)-4,5-dimethyl-4-hepten-3-ol: 15
13. In the following energy level profile for the addition of HBR to alkene, indicate by the following letters: A. The reactants B. The products C. The carbocation intermediate D. The activation energy of the slow step E. The activation energy of the fast step F. The overall AE of the reaction Is the overall reaction endothermic or exothermic? Reaction Progress Energy
4. Consider the following reaction mechanism and answer the questions. H-Br CH2 -CH3 -CH3 -CH3 Br Br Product B Br, Br Product A -CH3 a) Which product is most stable, label the kinetic and thermodynamic products? b) Which would have a higher energy of activation for the step leading to the kinetic or thermodynamic product (second step)? c) Sketch a reaction coordinate representing the above mechanism assuming the first step is the rate determining step. Include both pathways, label reactant, products, energy of activation and energy of reaction for the thermodynamic product. Reaction Coordinate Free Energy

Chapter 6 Solutions

Essential Organic Chemistry, Global Edition

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning