Concept explainers
Compare the true and engineering strain energy density, the strain energy absorbed in natural rubber and energy stored in steel specimen.
Answer to Problem 6.5P
The true and engineering strain energy density is 1.6 times the engineering strain density for natural rubber and the strain energy absorbed in natural rubber and energy stored in steel specimen have a huge difference because rubber can strain more and can store more energy inside it due to application of force on it.
Explanation of Solution
Given:
Engineering strain is
Write the expression for engineering secant elastic moduli of natural rubber.
Here,
Write the expression for true secant elastic moduli of natural rubber.
Here,
Write the expression for engineering strain energy absorbed in natural rubber.
Here,
Write the expression for true strain energy absorbed in natural rubber.
Here,
Refer to Example 6.2, the engineering stress for natural rubber is
Substitute
Refer to Example 6.2, the true stress for natural rubber is
Substitute
Substitute
Substitute
The true strain energy absorbed by natural rubber is 1.6 times the engineering strain energy absorbed by natural rubber. The variation in values indicates the difference in measurement through theoretical and practical approach.
Refer to example 6.5, the value of strain energy for steel specimen is
Thus, the true and engineering strain energy density is 1.6 times the engineering strain density for natural rubber and the strain energy absorbed in natural rubber and energy stored in steel specimen have a huge difference because rubber can strain more and can store more energy inside it due to application of force on it.
Want to see more full solutions like this?
Chapter 6 Solutions
Materials Science And Engineering Properties
- A load of P = 114 kN is supported by a structure consisting of rigid bar ABC, two identical solid bronze [E = 116 GPa] rods, and a solid steel [E=192 GPa] rod, as shown. The bronze rods (1) each have a diameter of 19 mm and they are symmetrically positioned relative to the center rod (2) and the applied load P. Steel rod (2) has a diameter of 28 mm. All bars are unstressed before the load P is applied; however, there is a 1.5-mm clearance in the bolted connection at B. Assume L₁ = 2.4m and L2 = 1.5 m. Determine: (a) the normal stresses in the bronze and steel rods (01,02). (b) the downward deflection of rigid bar ABC. (1) Answers: (a)σ1 = (b) vi L2 (2) (1) B P mm. Li MPa, 02 MPa. =arrow_forwardA high-density polvethelene (HD PE I9 - 780 MPaiy = 0.46 rod has a diameter of 70 mm before load Pis applied. In order to maintain certain clearances, the diameter of the rod must not exceed 72 mm when loaded. What is the largest permissible compressive load P that can be applied to the HDPE rod?arrow_forwardCurrent Attempt in Progress A load of P 117 kN is supported by a structure consisting of rigid bar ABC, two identical solid bronze [E= 83 GPa] rods, and a solid steel [E 182 GPa] rod, as shown. The bronze rods (1) each have a diameter of 20 mm and they are symmetrically positioned relative to the center rod (2) and the applied load P. Steel rod (2) has a diameter of 26 mm. All bars are unstressed before the load Pis applied; however, there is a 3.4-mm clearance in the bolted connection at B. Assume L₁ = 3.3 m and L2 = 1.6 m. Determine: (a) the normal stresses in the bronze and steel rods (01, 02). (b) the downward deflection v of rigid bar ABC. (1) Answers: L2 (2) (1) B P (a) σ = (b) y = eTextbook and Media Save for Later MPa. MPa, 02 = mm. Attempts: 0 of 5 used Submit Answerarrow_forward
- A vinyl [E= 2.60 GPa; v = 0.43] block with width b = 50 mm, depth d = 100 mm, and height h = 270 mm rests on a smooth rigid base. A load P is applied to a rigid plate that rests on top of the block. Calculate the change in the depth dimension d of the block after a load of P = 120 kN is applied. Rigid plate Answer: Ad= Width b Depth d Height Rigid base mmarrow_forwardAn aluminum [E = 11900 ksi] control rod with a circular cross section must not stretch more than 0.24 in. when the tension in the rod is 1980 lb. If the maximum allowable normal stress in the rod is 12.1 ksi, determine: (a) the smallest diameter d that can be used for the rod. (b) the corresponding maximum length L of the rod. Answers: (a) d = i (b) L = i in. in.arrow_forwardView Policies Current Attempt in Progress At an axial load of 19 kN, a 45-mm-wide by 15-mm-thick polyimide polymer bar elongates 2.7 mm while the bar width contracts 0.19 mm. The bar is 220 mm long. At the 19-kN load, the stress in the polymer bar is less than its proportional limit. Determine (a) the modulus of elasticity. (b) Poisson's ratio. (c) the change in the bar thickness. Answers: (a) E= (b) v= (c) Athickness eTextbook and Media Save for Later GPa mm Attempts: 0 of 5 used Submit Answerarrow_forward
- In the two-member assembly shown, find the axial force in rod (1) if P = 11.3 kips. 8 ft 12 ft O 4.45 kips 8.53 kips 9.38 kips O 7.24 kips 6.76 kips B 16 ftarrow_forwardFigure 3 shows the numerical solution of the advection equation for a scalar u along x at threeconsecutive timesteps.Provide an explanation what conditions and numerical setup could explain the curves. Identifywhich of the three curves is the first, second and third timestep.arrow_forwardRequired information For the beam shown, use only singularity functions. V₁-350 lbf, V2 35 lbf/in, V3-12 in, and V4 = 6 in. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. V1 V2 0 ZA V3 V4 V4 What is the value of the reaction force and the moment at O? The reaction force O is | The moment at point O is 650 lbf. lbf inarrow_forward
- Could you please draw the bending moment diagram for the shown frame. Please draw three, 1 for only the vertical load, 1 for the horizontal and 1 for combined.arrow_forwardProblem 2 Determine the force in each member of the truss shown by the method of joints. [10 marks] E 10 ft 5k 12 ft B 10 k 10 k 12 ftarrow_forwardV A W What is the degree of positioning (PG) of a cuboid body between two guiding surfaces? (Assumption: gravity ignored) U B W U C W U V V V PG = 0 PG = 1 PG = 2 D W PG = 3 Uarrow_forward
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningSteel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning