Concept explainers
Compare the true and engineering strain energy density, the strain energy absorbed in natural rubber and energy stored in steel specimen.
Answer to Problem 6.5P
The true and engineering strain energy density is 1.6 times the engineering strain density for natural rubber and the strain energy absorbed in natural rubber and energy stored in steel specimen have a huge difference because rubber can strain more and can store more energy inside it due to application of force on it.
Explanation of Solution
Given:
Engineering strain is
Write the expression for engineering secant elastic moduli of natural rubber.
Here,
Write the expression for true secant elastic moduli of natural rubber.
Here,
Write the expression for engineering strain energy absorbed in natural rubber.
Here,
Write the expression for true strain energy absorbed in natural rubber.
Here,
Refer to Example 6.2, the engineering stress for natural rubber is
Substitute
Refer to Example 6.2, the true stress for natural rubber is
Substitute
Substitute
Substitute
The true strain energy absorbed by natural rubber is 1.6 times the engineering strain energy absorbed by natural rubber. The variation in values indicates the difference in measurement through theoretical and practical approach.
Refer to example 6.5, the value of strain energy for steel specimen is
Thus, the true and engineering strain energy density is 1.6 times the engineering strain density for natural rubber and the strain energy absorbed in natural rubber and energy stored in steel specimen have a huge difference because rubber can strain more and can store more energy inside it due to application of force on it.
Want to see more full solutions like this?
Chapter 6 Solutions
Materials Science And Engineering Properties
- For the beam show below, draw A.F.D, S.F.D, B.M.D A 2 N M 10 kN.m B 2 M Carrow_forwardB: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) T₂ 0 T3 0 I need a real solution, not artificial intelligence locarrow_forward: +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forward
- I need a real solution, not artificial intelligencearrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forward
- I need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forward
- I need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forward
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning