1. For the foundation shown below: Qapp = 60 kips (Load obtained from structural engineer) 1.5 ft G.W.T. 3 ft Poorly Graded Sand (SP): Ym 115 pcf (above G.W.T.) Ysat 125 pcf (below G.W.T.) c' = 0, ' = 35° K Square footing, 4' x 4' Foundation Dimension Information: 1-ft x 1-ft square concrete column. 1-ft thick "foot" flanges. Yconc=150 pcf *Assume weight of reinforcing steel included in unit weight of concrete. *Assume compacted backfill weighs the same as in-situ soil. Assume this foundation is being designed for a warehouse that had a thorough preliminary soil exploration. Using the general bearing capacity equation: a. Calculate the gross applied bearing pressure, the gross ultimate bearing pressure, and determine if the foundation system is safe using a gross bearing capacity ASD approach. Please include the weight of the foundation, the weight of the backfill soil, and the effect of the uplift pressure caused by the presence of the water table in your bearing capacity calculations. b. Calculate the net applied bearing pressure, the net ultimate bearing pressure, and determine if the foundation system is safe using a net bearing capacity ASD approach. Please include the weight of the foundation, the weight of the backfill soil, and the effect of the uplift pressure caused by the presence of the water table in your bearing capacity calculations. c. Discuss the relative effect of the weight of the foundation, the weight of the backfill soil, and the effect of the uplift pressure caused by the presence of the water table on your bearing capacity calculations (both net and gross). Discuss conservatism / unconservatism and the validity of the assumption to include or neglect these factors in a bearing capacity analysis, by analyzing the magnitude of the contributions of these factors with respect to the loads that are applied by the structure.
1. For the foundation shown below: Qapp = 60 kips (Load obtained from structural engineer) 1.5 ft G.W.T. 3 ft Poorly Graded Sand (SP): Ym 115 pcf (above G.W.T.) Ysat 125 pcf (below G.W.T.) c' = 0, ' = 35° K Square footing, 4' x 4' Foundation Dimension Information: 1-ft x 1-ft square concrete column. 1-ft thick "foot" flanges. Yconc=150 pcf *Assume weight of reinforcing steel included in unit weight of concrete. *Assume compacted backfill weighs the same as in-situ soil. Assume this foundation is being designed for a warehouse that had a thorough preliminary soil exploration. Using the general bearing capacity equation: a. Calculate the gross applied bearing pressure, the gross ultimate bearing pressure, and determine if the foundation system is safe using a gross bearing capacity ASD approach. Please include the weight of the foundation, the weight of the backfill soil, and the effect of the uplift pressure caused by the presence of the water table in your bearing capacity calculations. b. Calculate the net applied bearing pressure, the net ultimate bearing pressure, and determine if the foundation system is safe using a net bearing capacity ASD approach. Please include the weight of the foundation, the weight of the backfill soil, and the effect of the uplift pressure caused by the presence of the water table in your bearing capacity calculations. c. Discuss the relative effect of the weight of the foundation, the weight of the backfill soil, and the effect of the uplift pressure caused by the presence of the water table on your bearing capacity calculations (both net and gross). Discuss conservatism / unconservatism and the validity of the assumption to include or neglect these factors in a bearing capacity analysis, by analyzing the magnitude of the contributions of these factors with respect to the loads that are applied by the structure.
Principles of Geotechnical Engineering (MindTap Course List)
9th Edition
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Braja M. Das, Khaled Sobhan
Chapter16: Soil Bearing Capacity For Shallow Foundations
Section: Chapter Questions
Problem 16.14P: Redo Problem 16.13 with the following data: gross allowable load = 184,000 lb, = 121 lb/ft3, c = 0,...
Related questions
Question

Transcribed Image Text:1. For the foundation shown below:
Qapp = 60 kips
(Load obtained from
structural engineer)
1.5 ft
G.W.T.
3 ft
Poorly Graded Sand (SP):
Ym
115 pcf (above G.W.T.)
Ysat 125 pcf (below G.W.T.)
c' = 0, ' = 35°
K
Square footing, 4' x 4'
Foundation Dimension Information:
1-ft x 1-ft square concrete column.
1-ft thick "foot" flanges.
Yconc=150 pcf
*Assume weight of reinforcing steel
included in unit weight of concrete.
*Assume compacted backfill
weighs the same as in-situ soil.
Assume this foundation is being designed for a warehouse that had a thorough preliminary soil
exploration. Using the general bearing capacity equation:
a. Calculate the gross applied bearing pressure, the gross ultimate bearing pressure, and
determine if the foundation system is safe using a gross bearing capacity ASD
approach. Please include the weight of the foundation, the weight of the backfill soil,
and the effect of the uplift pressure caused by the presence of the water table in your
bearing capacity calculations.
b. Calculate the net applied bearing pressure, the net ultimate bearing pressure, and
determine if the foundation system is safe using a net bearing capacity ASD
approach. Please include the weight of the foundation, the weight of the backfill soil,
and the effect of the uplift pressure caused by the presence of the water table in your
bearing capacity calculations.

Transcribed Image Text:c. Discuss the relative effect of the weight of the foundation, the weight of the backfill
soil, and the effect of the uplift pressure caused by the presence of the water table on
your bearing capacity calculations (both net and gross). Discuss conservatism /
unconservatism and the validity of the assumption to include or neglect these factors
in a bearing capacity analysis, by analyzing the magnitude of the contributions of
these factors with respect to the loads that are applied by the structure.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Principles of Geotechnical Engineering (MindTap C…
Civil Engineering
ISBN:
9781305970939
Author:
Braja M. Das, Khaled Sobhan
Publisher:
Cengage Learning

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Fundamentals of Geotechnical Engineering (MindTap…
Civil Engineering
ISBN:
9781305635180
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Principles of Geotechnical Engineering (MindTap C…
Civil Engineering
ISBN:
9781305970939
Author:
Braja M. Das, Khaled Sobhan
Publisher:
Cengage Learning

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Fundamentals of Geotechnical Engineering (MindTap…
Civil Engineering
ISBN:
9781305635180
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781305081550
Author:
Braja M. Das
Publisher:
Cengage Learning

Architectural Drafting and Design (MindTap Course…
Civil Engineering
ISBN:
9781285165738
Author:
Alan Jefferis, David A. Madsen, David P. Madsen
Publisher:
Cengage Learning

Construction Materials, Methods and Techniques (M…
Civil Engineering
ISBN:
9781305086272
Author:
William P. Spence, Eva Kultermann
Publisher:
Cengage Learning