Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 15CQ
To determine
The ratio of increment in applied stress to the increment in strain measured at the total strain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a tensile test on a metal specimen having a cross section 20 mm by 10 mm elastic breakdown
occurred at a load of 70 000 N.
A thin plate madec from the same material is to be subjected to loading such that at a certain
point in the plate the stresses are o,=-70 N/mm², 7.y= 60 N/mm² and o. Determine the
maximum allowable values of o, using the Tresca and von Mises theories of elastic breakdown.
Ans. 259 N/mm² (Tresca), 294 N/mm² (von Mises).
1. For each state of plane stress shown below, i.e., for configurations (a) and (b), indicate
whether each component of the state of strain is:
= 0 (equal to zero)
>0 (greater than zero)
<0 (less than zero)
The material is linear elastic with Possion's ratio is between (0, 0.5), and the deformations
are small.
T
30
e
X
0
Ex
Ey
Ez
Yxy
Yyz
Yzx
(a)
(b)
1°
(b)
1x
At a point in a strained material, tensile stress of 100 MPa and compressive stress of 60 MPa are found to be principal stresses Maximum shear
stress at that point is:
O 60 MPa
O 20 MPa
O 40 MPa
O 80 MPa
Chapter 6 Solutions
Materials Science And Engineering Properties
Ch. 6 - Prob. 1CQCh. 6 - Prob. 2CQCh. 6 - Prob. 3CQCh. 6 - Prob. 4CQCh. 6 - Prob. 5CQCh. 6 - Prob. 6CQCh. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Prob. 9CQCh. 6 - Prob. 10CQ
Ch. 6 - Prob. 11CQCh. 6 - Prob. 12CQCh. 6 - Prob. 13CQCh. 6 - Prob. 14CQCh. 6 - Prob. 15CQCh. 6 - Prob. 16CQCh. 6 - Prob. 17CQCh. 6 - Prob. 18CQCh. 6 - Prob. 19CQCh. 6 - Prob. 20CQCh. 6 - Prob. 21CQCh. 6 - Prob. 22CQCh. 6 - Prob. 23CQCh. 6 - Prob. 24CQCh. 6 - Prob. 25CQCh. 6 - Prob. 26CQCh. 6 - Prob. 27CQCh. 6 - Prob. 28CQCh. 6 - Prob. 29CQCh. 6 - Prob. 30CQCh. 6 - Prob. 31CQCh. 6 - Prob. 32CQCh. 6 - Prob. 33CQCh. 6 - Prob. 34CQCh. 6 - Prob. 35CQCh. 6 - Prob. 36CQCh. 6 - Prob. 37CQCh. 6 - Prob. 38CQCh. 6 - Prob. 1ETSQCh. 6 - Prob. 2ETSQCh. 6 - Prob. 3ETSQCh. 6 - Prob. 4ETSQCh. 6 - Prob. 5ETSQCh. 6 - Prob. 6ETSQCh. 6 - Prob. 7ETSQCh. 6 - Prob. 8ETSQCh. 6 - Prob. 9ETSQCh. 6 - At the ultimate tensile strength. (a) The true...Ch. 6 - Prob. 11ETSQCh. 6 - Prob. 12ETSQCh. 6 - Prob. 13ETSQCh. 6 - Prob. 14ETSQCh. 6 - Prob. 15ETSQCh. 6 - Prob. 16ETSQCh. 6 - Prob. 6.1PCh. 6 - Prob. 6.2PCh. 6 - Compare the engineering and true secant elastic...Ch. 6 - Prob. 6.4PCh. 6 - Prob. 6.5PCh. 6 - An iron specimen is plastically deformed in shear...Ch. 6 - Prob. 6.7PCh. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - Prob. 6.10PCh. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Estimate the elastic and plastic strain at the...Ch. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.1DPCh. 6 - Prob. 6.2DP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- An aluminium specimen with an initial gauge diameter d, = 10 mm and gauge length, 1, = 100 mm is %3D subjected to tension test. A tensile force P= 50 kN is applied at the ends of the specimen as shown, resulting in an elongation of 1 mm in gauge length. The Poisson's ratio (µ) of the specimen is Take shear modulus of material, G = 25 GPa. Consider engineering stress-strain conditions. Parrow_forwardA plate in equilibrium is subjected to uniform stresses along its edges with magnitude o = 30 %3D MPa and ow = 50 MPa as shown in the figure. %3D = 50 MPa %3D O = 30 MPa XX ple The Young's modulus of the material is 2 x 1011 N/m2 and the Poisson's ratio is 0.3. If o is negligibly small and assumed to be zero, then the strain Ezz isarrow_forwardQ- Principal stress at a point in an elastic material are 1.5 o (tensile), o (tensile) and 0.5o (compressive). The elastic limit in tension is 210 MPa and μ = 0.3. Find the value of o at failure when computed by maximum principal strain theory.arrow_forward
- Don't give me wrong solutionarrow_forwardA bronze rod is rigidly attached between an aluminum rod and a steel rod as shown in the figure below. Axial loads are applied at the positions indicated. a) Find the maximum value of P that will not exceed a stress in steel of 140 MPa, in bronze of 100 MPa, or in aluminum of 90 MPa. b) Determine the deformation of the bronze rod if the value of P is 22.50 KN. The moduli of elasticity are 200 GPa for steel, 80 GPa for bronze and 70 GPa for aluminum.arrow_forwardAt a point in an elastic material under strain, there are normal stresses of 60 N/mm2 and 40 N/mm2 (both tensile) at right angles to each other, with positive shearing stress of 20 N/mm2. The maximum shear stress and direction its plane will be respectivelyarrow_forward
- At a point in a strained material, tensile stress of 100 MPa and compressive stress of 60 MPa are found to be principal stresses. Maximum shear stress at that point is:arrow_forwardNote: Give me iii & iv solutionsarrow_forwardI5 In a tensile test experiment of carbon steel. a standard specimen (D= 0.505 in. Gauge length=2.0 in & total length 8 in) had a 0.2% offset yield strength of 80.000 psi and engineering strain of 0.010 at the yield strength point Calculate: The load (force) at this point. The instantaneous area of the specimen at this point. c. The true stress at this point. d. The true strain at this point. e. The total length of the specimen. if the load is released at this point.arrow_forward
- ANSWER A PLSarrow_forwardAcube of material is subjected to the following direct stress system: , = +120 N/mm², o, = + 80 N/mm² and o̟=-100 N/mm². If Young's modulus, E, is 200 000 N/mm² and Poisson's ratio, v, is 0.3 calculate the direct strain in the x, y and z directions and hence the volumetric strain in the cube.arrow_forwardA single zinc crystal is loaded in tension with the normal to its slip plane at 60° to the tensile axis and the slip direction at 40° to the tensile axis. a) Calculate the resolved shear stress when a tensile stress of0.69 MPa is applied. b) What tensile stress is necessary to reach the critical resolved shear stress of 0.94 MPa?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY