Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.1DP
(a)
To determine
The maximum yield stress for aluminum alloy.
(b)
To determine
The elongation of rod.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An AISI 1040 hot-rolled steel [E = 207 GPa; α = 11.3×10–6/°C] bar is held between two rigid supports. The bar is stress free at a temperature of 30°C. The bar is then heated uniformly. If the yield strength of the steel is 429 MPa, determine the temperature at which yield first occurs.
An aluminum alloy [E = 70 GPa; v = 0.33; a = 23.0×10-6/°C] bar is subjected to a tensile load P. The bar has a depth of d = 260 mm, a
cross-sectional area of A = 14720 mm2, and a length of L = 5.5 m. The initial longitudinal normal strain in the bar is zero. After load P
is applied and the temperature of the bar has been increased by AT = 46°C, the longitudinal normal strain is found to be 1680 µɛ.
% D
Calculate the change in bar depth d after the load P has been applied and the temperature has been increased.
L
P
Answer:
Ad =
i
mm
The assembly is composed of a steel shell and an aluminum
core that has been welded to a rigid plate. The gap between the
plate and the aluminum is initially 1- mm. If the assembly's
temperature is reduced by 180°C, determine (a) the final axial
stresses in each material and (b) the deflection of the rigid bar.
To support your response, draw a deformation diagram with
appropriate labels.
Use the following properties:
Aluminum core
Steel shell
Diameters (mm)
d = 15 mm
do = 30 mm
d₁ = 20 mm
E (GPa)
70
200
2 m
a (/°C)
22 x 10-6
12 x 10-6
Chapter 6 Solutions
Materials Science And Engineering Properties
Ch. 6 - Prob. 1CQCh. 6 - Prob. 2CQCh. 6 - Prob. 3CQCh. 6 - Prob. 4CQCh. 6 - Prob. 5CQCh. 6 - Prob. 6CQCh. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Prob. 9CQCh. 6 - Prob. 10CQ
Ch. 6 - Prob. 11CQCh. 6 - Prob. 12CQCh. 6 - Prob. 13CQCh. 6 - Prob. 14CQCh. 6 - Prob. 15CQCh. 6 - Prob. 16CQCh. 6 - Prob. 17CQCh. 6 - Prob. 18CQCh. 6 - Prob. 19CQCh. 6 - Prob. 20CQCh. 6 - Prob. 21CQCh. 6 - Prob. 22CQCh. 6 - Prob. 23CQCh. 6 - Prob. 24CQCh. 6 - Prob. 25CQCh. 6 - Prob. 26CQCh. 6 - Prob. 27CQCh. 6 - Prob. 28CQCh. 6 - Prob. 29CQCh. 6 - Prob. 30CQCh. 6 - Prob. 31CQCh. 6 - Prob. 32CQCh. 6 - Prob. 33CQCh. 6 - Prob. 34CQCh. 6 - Prob. 35CQCh. 6 - Prob. 36CQCh. 6 - Prob. 37CQCh. 6 - Prob. 38CQCh. 6 - Prob. 1ETSQCh. 6 - Prob. 2ETSQCh. 6 - Prob. 3ETSQCh. 6 - Prob. 4ETSQCh. 6 - Prob. 5ETSQCh. 6 - Prob. 6ETSQCh. 6 - Prob. 7ETSQCh. 6 - Prob. 8ETSQCh. 6 - Prob. 9ETSQCh. 6 - At the ultimate tensile strength. (a) The true...Ch. 6 - Prob. 11ETSQCh. 6 - Prob. 12ETSQCh. 6 - Prob. 13ETSQCh. 6 - Prob. 14ETSQCh. 6 - Prob. 15ETSQCh. 6 - Prob. 16ETSQCh. 6 - Prob. 6.1PCh. 6 - Prob. 6.2PCh. 6 - Compare the engineering and true secant elastic...Ch. 6 - Prob. 6.4PCh. 6 - Prob. 6.5PCh. 6 - An iron specimen is plastically deformed in shear...Ch. 6 - Prob. 6.7PCh. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - Prob. 6.10PCh. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Estimate the elastic and plastic strain at the...Ch. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.1DPCh. 6 - Prob. 6.2DP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Compare the engineering and true secant elastic moduli for the natural rubber in Example Problem 6.2 at an engineering strain of 6.0. Assume that the deformation is all elastic.arrow_forwardAn aluminum alloy [E = 72 GPa; v = 0.33; a= 23.0 x 10-6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 245 mm, a cross-sectional area of A = 5500 mm², and a length of L = 6.0 m. The initial longitudinal normal strain in the plate is zero. After load P is applied and the temperature of the plate has been increased by AT = 69°C, the longitudinal normal strain in the plate is found to be 3340 μc. Determine: (a) the magnitude of load P. (b) the change in plate depth Ad. L P Answer: (a) P = i (b) Δd = i KN mmarrow_forwardAn aluminum alloy [E = 73 GPa; v = 0.33; a= 23.0 x 10-6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 250 mm, a cross-sectional area of A = 6900 mm², and a length of L = 5.9 m. The initial longitudinal normal strain in the plate is zero. After load P is applied and the temperature of the plate has been increased by AT = 50°C, the longitudinal normal strain in the plate is found to be 2400 με. Determine: (a) the magnitude of load P. (b) the change in plate depth Ad. L Answer: (a) P = i (b) Δd = KN mmarrow_forward
- a. Which of the following gives the approximate modulus elasticity of the The stress-strain diagram for a steel alloy having an original diam. of 12 mm and a material? gauge length of 50 mm is given in the figure. b. Which of the following gives the load on the specimen that causes yielding? c. Which of the following gives the ultimate load the specimen will (8) MPa ultimate strength- 80 support? 70 60 repture' strength yäerd põint- 50+ 40 propórtional limit 30 20+ 10+ 0 .0005 .001.0015 .002 .0025 .003 .0035 E(mm/mm)arrow_forwardThe assembly shown consists of an aluminum shell (E,= 70 GPa, a, = 23.6 × 10-6rC) fully bonded to a steel core (Es = 200 GPa, as = 11.7 x 10-6rC) and the assembly is unstressed at a temperature of 20°C. Considering only axial deformations, determine the stress in the aluminum when the temperature reaches 215°C. 200 mm 20 mm Aluminum shell Steel 50 mm core The stress in the aluminum is MPa.arrow_forwardAn aluminum alloy [E = 67 GPa; ν = 0.33; α = 23.0 × 10–6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 225 mm, a cross-sectional area of A = 5100 mm2, and a length of L = 4.1 m. The initial longitudinal normal strain in the plate is zero. After load P is applied and the temperature of the plate has been increased by ΔT = 63°C, the longitudinal normal strain in the plate is found to be 2900 με. Determine: (a) the magnitude of load P. (b) the change in plate depth Δd.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
The History of Iron and Steel; Author: Real Engineering;https://www.youtube.com/watch?v=7E__zqy6xcw;License: Standard Youtube License