Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 10CQ
To determine
The equivalent volumetric strain for isotropic material subjected to the hydro-static stress.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The value of strain if stress is 35 MPa and Youngs modulus
65 MPa
A single zinc crystal is loaded in tension with the normal to its slip plane at 60° to the
tensile axis and the slip direction at 40° to the tensile axis.
a) Calculate the resolved shear stress when a tensile stress of0.69 MPa is applied.
b) What tensile stress is necessary to reach the critical resolved shear stress of 0.94 MPa?
At an axial load of 20 kN, a 35-mm-wide by 10-mm-thick polyimide polymer bar elongates 2.7 mm while the bar width contracts 0.15 mm. The bar is 240 mm long. At the 20-kN load, the stress in the polymer bar is less than its proportional limit.Determine(a) the modulus of elasticity.(b) Poisson’s ratio.(c) the change in the bar thickness.
Chapter 6 Solutions
Materials Science And Engineering Properties
Ch. 6 - Prob. 1CQCh. 6 - Prob. 2CQCh. 6 - Prob. 3CQCh. 6 - Prob. 4CQCh. 6 - Prob. 5CQCh. 6 - Prob. 6CQCh. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Prob. 9CQCh. 6 - Prob. 10CQ
Ch. 6 - Prob. 11CQCh. 6 - Prob. 12CQCh. 6 - Prob. 13CQCh. 6 - Prob. 14CQCh. 6 - Prob. 15CQCh. 6 - Prob. 16CQCh. 6 - Prob. 17CQCh. 6 - Prob. 18CQCh. 6 - Prob. 19CQCh. 6 - Prob. 20CQCh. 6 - Prob. 21CQCh. 6 - Prob. 22CQCh. 6 - Prob. 23CQCh. 6 - Prob. 24CQCh. 6 - Prob. 25CQCh. 6 - Prob. 26CQCh. 6 - Prob. 27CQCh. 6 - Prob. 28CQCh. 6 - Prob. 29CQCh. 6 - Prob. 30CQCh. 6 - Prob. 31CQCh. 6 - Prob. 32CQCh. 6 - Prob. 33CQCh. 6 - Prob. 34CQCh. 6 - Prob. 35CQCh. 6 - Prob. 36CQCh. 6 - Prob. 37CQCh. 6 - Prob. 38CQCh. 6 - Prob. 1ETSQCh. 6 - Prob. 2ETSQCh. 6 - Prob. 3ETSQCh. 6 - Prob. 4ETSQCh. 6 - Prob. 5ETSQCh. 6 - Prob. 6ETSQCh. 6 - Prob. 7ETSQCh. 6 - Prob. 8ETSQCh. 6 - Prob. 9ETSQCh. 6 - At the ultimate tensile strength. (a) The true...Ch. 6 - Prob. 11ETSQCh. 6 - Prob. 12ETSQCh. 6 - Prob. 13ETSQCh. 6 - Prob. 14ETSQCh. 6 - Prob. 15ETSQCh. 6 - Prob. 16ETSQCh. 6 - Prob. 6.1PCh. 6 - Prob. 6.2PCh. 6 - Compare the engineering and true secant elastic...Ch. 6 - Prob. 6.4PCh. 6 - Prob. 6.5PCh. 6 - An iron specimen is plastically deformed in shear...Ch. 6 - Prob. 6.7PCh. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - Prob. 6.10PCh. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Estimate the elastic and plastic strain at the...Ch. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.1DPCh. 6 - Prob. 6.2DP
Knowledge Booster
Similar questions
- At a point in a strained material, tensile stress of 100 MPa and compressive stress of 60 MPa are found to be principal stresses Maximum shear stress at that point is: O 60 MPa O 20 MPa O 40 MPa O 80 MPaarrow_forward6arrow_forwardAt an axial load of 25 kN, a 50-mm-wide by 15-mm-thick polyimide polymer bar elongates 3.1 mm while the bar width contracts 0.26 mm. The bar is 220 mm long. At the 25-kN load, the stress in the polymer bar is less than its proportional limit Determine (a) the modulus of elasticity. (b) Poisson's ratio. (c) the change in the bar thickness. Answers: (a) E- (b) v- (c) Audness GPa mmarrow_forward
- 6arrow_forwardAt an axial load of 22 kN, a 15-mm-thick x 35-mm-wide polyimide polymer bar elongates 4.2 mm while the bar width contracts 0.25 mm. The bar is 215-mm long. At the 22-kN load, the stress in the polymer bar is less than its proportional limit. Determine Poisson's ratio. O 0.366 O 0.336 EBA O 0.473 O 0.229 O 0.427arrow_forward6.46 For some metal alloy, a true stress of 345 MPa e (50,000 psi) produces a plastic true strain of 0.02. How much does a specimen of this material elongate when a true stress of 415 MPa (60,000 psi) is applied if the original length is 500 mm (20 in.)? Assume a value of 0.22 for the strain-hardening exponent, n.arrow_forward
- For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 411 MPa (59610 psi) is applied if the original length is 450 mm (17.72 in.)? Assume a value of 0.22 for the strain-hardening exponent, n. i mmarrow_forwardAt an axial load of 22 kN, a 15-mm-thick x 45-mm-wide polyimide polymer bar elongates 3.9 mm while the bar width contracts 0.25 mm. The bar is 265-mm long. At the 22-kN load, the stress in the polymer bar is less than its proportional limit. Determine Poisson's ratio. O 0.237 O 0.483 O 0.434 O 0.377 O 0.352arrow_forwardAt a point in a strained material, tensile stress of 100 MPa and compressive stress of 60 MPa are found to be principal stresses. Maximum shear stress at that point is:arrow_forward
- An aluminium specimen with an initial gauge diameter d, = 10 mm and gauge length, 1, = 100 mm is %3D subjected to tension test. A tensile force P= 50 kN is applied at the ends of the specimen as shown, resulting in an elongation of 1 mm in gauge length. The Poisson's ratio (µ) of the specimen is Take shear modulus of material, G = 25 GPa. Consider engineering stress-strain conditions. Parrow_forwardAn elasto-plastic material with strain hardening behavior has a stress-strain relationship composed by a linear elastic phase (E»10 MPa, O y=0.1 MPa) followed by a linear plastic phase with a slope of 1 MPa . Calculate the total strain that correspond to a stress of 0.3 MPa.arrow_forward1. For each state of plane stress shown below, i.e., for configurations (a) and (b), indicate whether each component of the state of strain is: = 0 (equal to zero) >0 (greater than zero) <0 (less than zero) The material is linear elastic with Possion's ratio is between (0, 0.5), and the deformations are small. T 30 e X 0 Ex Ey Ez Yxy Yyz Yzx (a) (b) 1° (b) 1xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning