Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 36CQ
To determine
The reason for elastic strain in crystalline metal and ceramics.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Briefly explain the (a) how and (b) why the size of elastic deformation changes as the thickness of the specimen increases when a rod-shaped specimen made of the same material is bent.
Draw a tensile stress-strain curve for a typical semi-crystalline polymer such as LLDPE, and define the three main regions on the curve.
5) A single zinc crystal is loaded in tension with the normal to its slip plane at 60° to the
tensile axis and the slip direction at 40° to the tensile axis.
a) Calculate the resolved shear stress when a tensile stress of 0.69 MPa is applied.
b) What tensile stress is necessary to reach the critical resolved shear stress of 0.94 MPa?
Chapter 6 Solutions
Materials Science And Engineering Properties
Ch. 6 - Prob. 1CQCh. 6 - Prob. 2CQCh. 6 - Prob. 3CQCh. 6 - Prob. 4CQCh. 6 - Prob. 5CQCh. 6 - Prob. 6CQCh. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Prob. 9CQCh. 6 - Prob. 10CQ
Ch. 6 - Prob. 11CQCh. 6 - Prob. 12CQCh. 6 - Prob. 13CQCh. 6 - Prob. 14CQCh. 6 - Prob. 15CQCh. 6 - Prob. 16CQCh. 6 - Prob. 17CQCh. 6 - Prob. 18CQCh. 6 - Prob. 19CQCh. 6 - Prob. 20CQCh. 6 - Prob. 21CQCh. 6 - Prob. 22CQCh. 6 - Prob. 23CQCh. 6 - Prob. 24CQCh. 6 - Prob. 25CQCh. 6 - Prob. 26CQCh. 6 - Prob. 27CQCh. 6 - Prob. 28CQCh. 6 - Prob. 29CQCh. 6 - Prob. 30CQCh. 6 - Prob. 31CQCh. 6 - Prob. 32CQCh. 6 - Prob. 33CQCh. 6 - Prob. 34CQCh. 6 - Prob. 35CQCh. 6 - Prob. 36CQCh. 6 - Prob. 37CQCh. 6 - Prob. 38CQCh. 6 - Prob. 1ETSQCh. 6 - Prob. 2ETSQCh. 6 - Prob. 3ETSQCh. 6 - Prob. 4ETSQCh. 6 - Prob. 5ETSQCh. 6 - Prob. 6ETSQCh. 6 - Prob. 7ETSQCh. 6 - Prob. 8ETSQCh. 6 - Prob. 9ETSQCh. 6 - At the ultimate tensile strength. (a) The true...Ch. 6 - Prob. 11ETSQCh. 6 - Prob. 12ETSQCh. 6 - Prob. 13ETSQCh. 6 - Prob. 14ETSQCh. 6 - Prob. 15ETSQCh. 6 - Prob. 16ETSQCh. 6 - Prob. 6.1PCh. 6 - Prob. 6.2PCh. 6 - Compare the engineering and true secant elastic...Ch. 6 - Prob. 6.4PCh. 6 - Prob. 6.5PCh. 6 - An iron specimen is plastically deformed in shear...Ch. 6 - Prob. 6.7PCh. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - Prob. 6.10PCh. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Estimate the elastic and plastic strain at the...Ch. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.1DPCh. 6 - Prob. 6.2DP
Knowledge Booster
Similar questions
- Estimate the elastic and plastic strain at the ultimate tensile strength in the low-carbon steel specimen in Figure 6.16.arrow_forwardAn iron specimen is plastically deformed in shear by 1%, and it has u dislocation density of 1 10 14 m/ m 3 Assume that the dislocation density did not change in the 1% strain of thisspecimen, the Burger's vector (b) is a 2 [1 1 1] the slip plane is (110). the shear stress isapplied to the (110) plane, and the lattice parameter of the BCC iron is 0.286 nm. Calculate the magnitude of the Burger's vector for these dislocations in iron. Calculate the average distance moved by the mobile dislocations as a result of the 1% shear strain.arrow_forwardThe stress in an elastic material is: A Inversely proportional to the force acting B Inversely proportional to the materials yield strength C Proportional to the displacement D Inversely proportional to the strainarrow_forward
- A bronze rod is rigidly attached between an aluminum rod and a steel rod as shown in the figure below. Axial loads are applied at the positions indicated. a) Find the maximum value of P that will not exceed a stress in steel of 140 MPa, in bronze of 100 MPa, or in aluminum of 90 MPa. b) Determine the deformation of the bronze rod if the value of P is 22.50 KN. The moduli of elasticity are 200 GPa for steel, 80 GPa for bronze and 70 GPa for aluminum.arrow_forwardNarrow bars of aluminum are bonded to the two sides of a thick steel plate as shown. Initially, at T₁ = 70°F, all stresses are zero. Knowing that the temperature will be slowly raised to T₂ and then reduced to T₁, determine (a) the highest temperature T₂ that does not result in residual stresses, (b) the temperature T₂ that will result in a residual stress in the aluminum equal to 58 ksi. Assume aa = 12.8 x 10-6/°F for the aluminum and a = 6.5 × 10-6/°F for the steel. Further assume that the aluminum is elastoplastic with E = 10.9 × 106 psi and ay = 58 ksi. (Hint: Neglect the small stresses in the plate.) Fig. P2.121arrow_forwardWithin elastic limit, stress is O(A) Inversely proportional to strain O(B) Directly proportional to strain OCC) Square root of strain O(D) Equal to strainarrow_forward
- Strain = 600 Stress = Strain = 500 Stress = 400 500 300 400 300 200 200 100 100 0.000 0.002 0.004 0.006 Strain 0.00 0.04 0.08 0.12 0.16 0.20 Strain Stress (MPa)arrow_forwardAn aluminum alloy [E = 67 GPa; ν = 0.33; α = 23.0 × 10–6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 225 mm, a cross-sectional area of A = 5100 mm2, and a length of L = 4.1 m. The initial longitudinal normal strain in the plate is zero. After load P is applied and the temperature of the plate has been increased by ΔT = 63°C, the longitudinal normal strain in the plate is found to be 2900 με. Determine: (a) the magnitude of load P. (b) the change in plate depth Δd.arrow_forwardA steel 0.6 inch×1.2 inch steel 90 m long is subjected to a 45 KN tensile load along its lenght.If poison's ratio is 0.3 Find: A. The deformation along its lenght. B. The deformation along its thickness. C. The defirmation along uts width. D. The lateral strain.arrow_forward
- The intensity of stress which causes unit strain is called O(A) Unit mass O(B) Modulus of rigidity OC) Bulk modulus O(D) Modulus of Elasticityarrow_forwardQus :arrow_forwardIn a laboratory test of a beam loaded by end couples, the fiber at layer AB as shown are found to increase 50 x 10 mm while -3 those at CD decrease 60 x 10 nm in the 210 mm gage length Using E 140 GPa, determine the flexural stress at the top fiber. Answer must be in MPa. Given: a 50 mm, b 130 mm, and c 80 mm. gage length la mm omm c mniarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning