Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 7ETSQ
To determine
The reason for plastic strain in silica glass at a temperature above the glass transition temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3.What is a dislocation? List five more microscopic defects in bulk materials. Which of the
following properties are most sensitive to dislocation structures in materials?
a. Young's modulus
b. Yield strength
c. Conductivity
d. Transparency
Narrow bars of aluminum are bonded to the two sides of a thick
steel plate as shown. Initially, at T₁ = 70°F, all stresses are zero.
Knowing that the temperature will be slowly raised to T₂ and then
reduced to T₁, determine (a) the highest temperature T₂ that does
not result in residual stresses, (b) the temperature T₂ that will
result in a residual stress in the aluminum equal to 58 ksi. Assume
aa = 12.8 x 10-6/°F for the aluminum and a = 6.5 × 10-6/°F for
the steel. Further assume that the aluminum is elastoplastic with
E = 10.9 × 106 psi and ay = 58 ksi. (Hint: Neglect the small
stresses in the plate.)
Fig. P2.121
Q7> Ductile-to-brittle transition temperature (DBTT) is a very important parameter in the design of metallic
materials for engineering applications. It has been well known that most of BCC and HCP metals show the DBT
phenomenon; however, there is no DBTT in FCC metals.
(a) Explain the reason in terms of deformation and fracture. You must compare the BCC and FCC.
(b) The ductile fracture surface consists of many dimples.
Explain their formation mechanism from the concept of point defects.
(c) There are two types in the brittle fracture. Explain and Compare them.
Chapter 6 Solutions
Materials Science And Engineering Properties
Ch. 6 - Prob. 1CQCh. 6 - Prob. 2CQCh. 6 - Prob. 3CQCh. 6 - Prob. 4CQCh. 6 - Prob. 5CQCh. 6 - Prob. 6CQCh. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Prob. 9CQCh. 6 - Prob. 10CQ
Ch. 6 - Prob. 11CQCh. 6 - Prob. 12CQCh. 6 - Prob. 13CQCh. 6 - Prob. 14CQCh. 6 - Prob. 15CQCh. 6 - Prob. 16CQCh. 6 - Prob. 17CQCh. 6 - Prob. 18CQCh. 6 - Prob. 19CQCh. 6 - Prob. 20CQCh. 6 - Prob. 21CQCh. 6 - Prob. 22CQCh. 6 - Prob. 23CQCh. 6 - Prob. 24CQCh. 6 - Prob. 25CQCh. 6 - Prob. 26CQCh. 6 - Prob. 27CQCh. 6 - Prob. 28CQCh. 6 - Prob. 29CQCh. 6 - Prob. 30CQCh. 6 - Prob. 31CQCh. 6 - Prob. 32CQCh. 6 - Prob. 33CQCh. 6 - Prob. 34CQCh. 6 - Prob. 35CQCh. 6 - Prob. 36CQCh. 6 - Prob. 37CQCh. 6 - Prob. 38CQCh. 6 - Prob. 1ETSQCh. 6 - Prob. 2ETSQCh. 6 - Prob. 3ETSQCh. 6 - Prob. 4ETSQCh. 6 - Prob. 5ETSQCh. 6 - Prob. 6ETSQCh. 6 - Prob. 7ETSQCh. 6 - Prob. 8ETSQCh. 6 - Prob. 9ETSQCh. 6 - At the ultimate tensile strength. (a) The true...Ch. 6 - Prob. 11ETSQCh. 6 - Prob. 12ETSQCh. 6 - Prob. 13ETSQCh. 6 - Prob. 14ETSQCh. 6 - Prob. 15ETSQCh. 6 - Prob. 16ETSQCh. 6 - Prob. 6.1PCh. 6 - Prob. 6.2PCh. 6 - Compare the engineering and true secant elastic...Ch. 6 - Prob. 6.4PCh. 6 - Prob. 6.5PCh. 6 - An iron specimen is plastically deformed in shear...Ch. 6 - Prob. 6.7PCh. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - Prob. 6.10PCh. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Estimate the elastic and plastic strain at the...Ch. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.1DPCh. 6 - Prob. 6.2DP
Knowledge Booster
Similar questions
- An iron specimen is plastically deformed in shear by 1%, and it has u dislocation density of 1 10 14 m/ m 3 Assume that the dislocation density did not change in the 1% strain of thisspecimen, the Burger's vector (b) is a 2 [1 1 1] the slip plane is (110). the shear stress isapplied to the (110) plane, and the lattice parameter of the BCC iron is 0.286 nm. Calculate the magnitude of the Burger's vector for these dislocations in iron. Calculate the average distance moved by the mobile dislocations as a result of the 1% shear strain.arrow_forwardIn an engineering application, the material is a strip of iron with a fixed crystallographic structure subject to a tensile load during operation. The part failed (yielded) during operation and needs to be replaced with a component with better properties. You are told that two other iron strips had failed at yield stresses of 110 and 120 MPa, with grain sizes of 30 microns and 25 microns respectively. The current strip has a grain size of 20 microns. The diameter of the rod is 1 mm and the load applied is 100 N. What is the yield stress of the new part C and would you recommend it for operation? Select one: Oa. 133.5 MPa, yes O b. OC. Od Oe. 120.5 MPa, no 129.5, yes 140.5, no 123.5 MPa, yesarrow_forwardA laminated [0/90/0/90]s graphite/epoxy beam is 1 mm thick, is 20 mm wide, and has 0.125 mm thick plies. The lamina properties are E1 = 180 GPa, E2 = 10 GPa, ν12 = 0.28, G12 = 7 GPa Xt = 1700 MPa, Xc = 1400 MPa, Yt = 40 MPa, Yc = 230 MPa (a) Determine the flexural modulus of the beam (b) How could the flexural modulus be improved without changing the ply materials, the number of plies, or the ply orientations? (c) Using the Maximum Stress Criterion for each ply, determine the magnitude of the maximum allowable bending moment that the beam can withstand. Which ply fails first?arrow_forward
- 16) Which of the following mechanical properties can be measured / calculated from this tensile stress-strain graph of a generic metal alloy? (pick all that apply) a. Poisson's ratio b. Elastic modulus C. Shear modulus d. Flexural modulus e. Fracture toughness 17) Interstitial sites in a FCC lattice are called a. Rhombohedral and cubic b. Cubic and hexagonal C. Monoclinic and triclinic Stress (MPa) 2000 MPa 2000 1000 1000 0.000 0.005 0.010 0.015 Strain 0.000 0.020 0.040 Strain 0.060 0.080 d. Tetrahedral and octahedral e. Heterogeneous and homogeneous 18) Traditional photovoltaics rely on which structural feature to separate charge carriers? a. The p-n junction b. The grain boundaries C. The twin boundaries d. The electron-hole pair e. The band gap 19) The process by which lithium ions move in to and out of graphite in a lithium-ion battery is called a. Intercalation b. Stacking C. Precipitation d. Phase combination e. lonization 20) A polymer obtained by the polymerization of two types…arrow_forward6)arrow_forwardThe deformation per unit length is called O(A) Tensile stress O(B) Compressive stress OCC) Shear stress O(D) Strainarrow_forward
- An aluminum alloy [E = 70 GPa; v = 0.33; a = 23.0×10-6/°C] bar is subjected to a tensile load P. The bar has a depth of d = 260 mm, a cross-sectional area of A = 14720 mm2, and a length of L = 5.5 m. The initial longitudinal normal strain in the bar is zero. After load P is applied and the temperature of the bar has been increased by AT = 46°C, the longitudinal normal strain is found to be 1680 µɛ. % D Calculate the change in bar depth d after the load P has been applied and the temperature has been increased. L P Answer: Ad = i mmarrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 12.5 x 10-6/°F] bar with a width of 3.0 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 9.6 x 10-6/°F] bar with a width of 2.0 in. and a thickness of 0.75 in. The supports at A and C are rigid. Determine (a) the lowest temperature at which the two bars contact each other. (b) the normal stress in the two bars at a temperature of 250°F. (c) the normal strain in the two bars at 250°F. (d) the change in width of the aluminum bar at a temperature of 250°F. (1) 3.0 in. 32 in. 2.0 in. B ↓ (2) 44 in. 0.04-in. gap Determine the lowest temperature, Tcontact, at which the two bars contact each other.arrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; α=α=12.5 x 10-6/°F] bar with a width of 2.5 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; α=α=9.6 x 10-6/°F] bar with a width of 1.7 in. and a thickness of 0.75 in. The supports at A and C are rigid. Assume h1=2.5 in., h2=1.7 in., L1=31 in., L2=46 in., and Δ=Δ= 0.04 in. (A) Determine the lowest temperature, Tcontact, at which the two bars contact each other. (B) Find a geometry-of-deformation relationship for the case in which the gap is closed. Express this relationship by entering the sum δ1+δ2, where δ1 is the axial deflection of Bar (1), and δ2 is the axial deflection of Bar (2). δ1+δ2= _____in. (C) Find the force in the Bar (1), F1, and the force in Bar (2), F2, at a temperature of 225oF. By convention, a tension force is positive and a compression force is negative. IN KIPS (D) Find σ1 and σ2,…arrow_forward
- An aluminum alloy [E = 67 GPa; ν = 0.33; α = 23.0 × 10–6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 225 mm, a cross-sectional area of A = 5100 mm2, and a length of L = 4.1 m. The initial longitudinal normal strain in the plate is zero. After load P is applied and the temperature of the plate has been increased by ΔT = 63°C, the longitudinal normal strain in the plate is found to be 2900 με. Determine: (a) the magnitude of load P. (b) the change in plate depth Δd.arrow_forwardA copper rod is deformed using a uniaxial tensile force of 16000 N. Deformation continues until sufficient strain hardening has occurred such that the applied force is too small to allow further deformation. After deformation, the rod has a diameter of 0.01 m and a length of 1.5 m. Assume that copper follows the strain hardening lawwith K of 310 MPa and n=0.54 Please calculate the true strain after the deformation ?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning