Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 5ETSQ
To determine
The isotropic material.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 12.5 x 10-6/°F] bar
with a width of 3.0 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 9.6 x 10-6/°F] bar with a width of 2.0 in. and a thickness of
0.75 in. The supports at A and C are rigid. Determine
(a) the lowest temperature at which the two bars contact each other.
(b) the normal stress in the two bars at a temperature of 250°F.
(c) the normal strain in the two bars at 250°F.
(d) the change in width of the aluminum bar at a temperature of 250°F.
(1)
3.0 in.
32 in.
2.0 in.
B ↓
(2)
44 in.
0.04-in. gap
Determine the lowest temperature, Tcontact, at which the two bars contact each other.
At a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; α=α=12.5 x 10-6/°F] bar with a width of 2.5 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; α=α=9.6 x 10-6/°F] bar with a width of 1.7 in. and a thickness of 0.75 in. The supports at A and C are rigid. Assume h1=2.5 in., h2=1.7 in., L1=31 in., L2=46 in., and Δ=Δ= 0.04 in.
(A) Determine the lowest temperature, Tcontact, at which the two bars contact each other.
(B) Find a geometry-of-deformation relationship for the case in which the gap is closed. Express this relationship by entering the sum δ1+δ2, where δ1 is the axial deflection of Bar (1), and δ2 is the axial deflection of Bar (2). δ1+δ2= _____in.
(C) Find the force in the Bar (1), F1, and the force in Bar (2), F2, at a temperature of 225oF. By convention, a tension force is positive and a compression force is negative. IN KIPS
(D) Find σ1 and σ2,…
At a temperature of 60°F, a 0.02-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; α=α=12.5 x 10-6/°F] bar with a width of 2.8 in. and a thickness of 0.85 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; α=α=9.6 x 10-6/°F] bar with a width of 1.6 in. and a thickness of 0.85 in. The supports at A and C are rigid. Assume h1=2.8 in., h2=1.6 in., L1=26 in., L2=40 in., and Δ=Δ= 0.02 in. Determine(a) the lowest temperature at which the two bars contact each other.(b) the normal stress in the two bars at a temperature of 225°F.(c) the normal strain in the two bars at 225°F.(d) the change in width of the aluminum bar at a temperature of 225°F.
Chapter 6 Solutions
Materials Science And Engineering Properties
Ch. 6 - Prob. 1CQCh. 6 - Prob. 2CQCh. 6 - Prob. 3CQCh. 6 - Prob. 4CQCh. 6 - Prob. 5CQCh. 6 - Prob. 6CQCh. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Prob. 9CQCh. 6 - Prob. 10CQ
Ch. 6 - Prob. 11CQCh. 6 - Prob. 12CQCh. 6 - Prob. 13CQCh. 6 - Prob. 14CQCh. 6 - Prob. 15CQCh. 6 - Prob. 16CQCh. 6 - Prob. 17CQCh. 6 - Prob. 18CQCh. 6 - Prob. 19CQCh. 6 - Prob. 20CQCh. 6 - Prob. 21CQCh. 6 - Prob. 22CQCh. 6 - Prob. 23CQCh. 6 - Prob. 24CQCh. 6 - Prob. 25CQCh. 6 - Prob. 26CQCh. 6 - Prob. 27CQCh. 6 - Prob. 28CQCh. 6 - Prob. 29CQCh. 6 - Prob. 30CQCh. 6 - Prob. 31CQCh. 6 - Prob. 32CQCh. 6 - Prob. 33CQCh. 6 - Prob. 34CQCh. 6 - Prob. 35CQCh. 6 - Prob. 36CQCh. 6 - Prob. 37CQCh. 6 - Prob. 38CQCh. 6 - Prob. 1ETSQCh. 6 - Prob. 2ETSQCh. 6 - Prob. 3ETSQCh. 6 - Prob. 4ETSQCh. 6 - Prob. 5ETSQCh. 6 - Prob. 6ETSQCh. 6 - Prob. 7ETSQCh. 6 - Prob. 8ETSQCh. 6 - Prob. 9ETSQCh. 6 - At the ultimate tensile strength. (a) The true...Ch. 6 - Prob. 11ETSQCh. 6 - Prob. 12ETSQCh. 6 - Prob. 13ETSQCh. 6 - Prob. 14ETSQCh. 6 - Prob. 15ETSQCh. 6 - Prob. 16ETSQCh. 6 - Prob. 6.1PCh. 6 - Prob. 6.2PCh. 6 - Compare the engineering and true secant elastic...Ch. 6 - Prob. 6.4PCh. 6 - Prob. 6.5PCh. 6 - An iron specimen is plastically deformed in shear...Ch. 6 - Prob. 6.7PCh. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - Prob. 6.10PCh. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Estimate the elastic and plastic strain at the...Ch. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.1DPCh. 6 - Prob. 6.2DP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please kindly give me right answer Note: this is not an assignment questionarrow_forwardPlease solve the following problem step by step so I can understand.arrow_forward1. The tensile strength vs. temperature curves of aluminum are plotted below. Explain the meaning of these two curves. 400 Ultimate strength 300 Yield strength 200 100 -200 -150 -100 -50 50 100 150 200 250 Temperature, °C Strength, kPaarrow_forward
- State your reasons why carbon nanotubes are considered ceramics or not.arrow_forwardAt a temperature of 60°F, a 0.04 in. gap exists between the ends of the two bars shown in the figure. Bar (1) is an aluminum alloy [E=10000 ksi; v=0.32; a= 12.5 x10^-6/,°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E= 28000 ksi; v=0.12; a=9.6x10^-6/°F] bar with a width of 2 in and a thickness of 0.75 in. The supports at A and C are rigid. Determine the normal stress in bar (1) at a temperature of 380°F. Answer in ksiarrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 14.4 x 10-6/°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 9.6 × 10-6/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and Care rigid. Determine the lowest temperature at which the two bars contact each other. (1) 3 in. 32 in. 105.3°F 75.3°F O 147.3°F 86.6°F 113.4°F B ↑ 2 in. ↓ (2) 44 in. 0.04-in. gaparrow_forward
- At a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 13.4 x 10-6/°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 10.1 x 10-6/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and Care rigid. Determine the lowest temperature at which the two bars contact each other. (1) ↑ 3 in. 32 in. O 75.9°F O 146.5°F O 105.8°F O 122.3°F O 111.3°F 2 in. (2) 44 in. -0.04-in. gaparrow_forwardMaterials, properties and testing Describe the effect bend testing have on the thermal properties of steel.arrow_forwardWhy Ceramics are stronger in compression than in tension?(Provided that the answer is scientific brief)arrow_forward
- At a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 12.7 x 10-6/°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 8.6 x 10-6/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and C are rigid. Determine the lowest temperature at which the two bars contact each other. (1) 3 in. 32 in. 90.2°F O 69.9°F 139.2°F 103.5°F O 111.0°F B ↑ 2 in. ↓ 44 in. -0.04-in. gaparrow_forwardWhat do you mean by Corrosion of Steelarrow_forwardThe assembly shown is composed of a steel shell and an aluminum core that has been welded to a rigid plate. The gap between the plate and the steel shell is 1- mm. If the assembly's temperature is reduced by 180°C, determine (a) the final axial stresses in each material and (b) the deflection of the rigid bar. To support your response, draw a deformation diagram with appropriate labels. Use the following properties: Aluminum core Steel shell Diameters (mm) d = 15 mm do = 30 mm d₁ = 20 mm E (GPa) 70 200 2 m a (/°C) 22 x 10-6 12 x 10-6arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning