![Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)](https://www.bartleby.com/isbn_cover_images/9780133178579/9780133178579_largeCoverImage.gif)
a.
Tofind the height of the pile.
a.
![Check Mark](/static/check-mark.png)
Answer to Problem 16E
The height is increasing by
Explanation of Solution
Given information:
Sand falls from a conveyor at the rate of
Formula:
Let diameter is defined as two times the radius
By using the given relationship between
Volume of cone is
Implicitly differentiate the cylinder volume equation
Substitute the given values,
Therefore,the height is increasing by
b.
To find the change in radius whenthe pile
b.
![Check Mark](/static/check-mark.png)
Answer to Problem 16E
The change in radius is increased by
Explanation of Solution
Given information:
Sand falls from a conveyor at the rate of
Formula:
Let the diameter is
Rate of volume increased is given by
By using the given relationship between
Volume of cone is
Implicitly differentiate the cylinder volume equation
Substitute the given values,
Therefore,the change in radius is increased by
Chapter 5 Solutions
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Additional Math Textbook Solutions
Basic Business Statistics, Student Value Edition
Elementary Statistics (13th Edition)
Elementary Statistics: Picturing the World (7th Edition)
University Calculus: Early Transcendentals (4th Edition)
College Algebra with Modeling & Visualization (5th Edition)
Calculus: Early Transcendentals (2nd Edition)
- Question 3 Starting at the point (0, −2,0), I walk up the hill z = 4-x² — y². The projection of my path on the xy plane is the line y = 2x-2. (a) At what point on my path is my altitude (the z-value) the greatest? (b) What is the slope m of my path (taking the z-axis to be vertical) when I am at the point (1, 0, 3)? [Hint: Parametrize my path (take x to be t).]arrow_forwardI circled the correct, could you explain using stokearrow_forwardUse Euler's method to numerically integrate dy dx -2x+12x² - 20x +8.5 from x=0 to x=4 with a step size of 0.5. The initial condition at x=0 is y=1. Recall that the exact solution is given by y = -0.5x+4x³- 10x² + 8.5x+1arrow_forward
- Find an equation of the line tangent to the graph of f(x) = (5x-9)(x+4) at (2,6).arrow_forwardFind the point on the graph of the given function at which the slope of the tangent line is the given slope. 2 f(x)=8x²+4x-7; slope of the tangent line = -3arrow_forwardUse the product rule to find the derivative of the following. p(y) (y¹ + y²) (6y¯³-10y¯4)arrow_forward
- Question Given the graph of f(z) below, identify the graph of f'(z). Select the correct answer below: -7-6-5-4-3-2 1 2 3 4 5 6 + 123. -7-6-5-4-3 12 + 4-3-2-1 1arrow_forwardFind this expression in frequency domain in a expression y(t), in time, that is.arrow_forwardplease dont use chat gptarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)