Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
4th Edition
ISBN: 9780133178579
Author: Ross L. Finney
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 12RE

a.

To determine

To find the intervals on which the function is increasing by using analytical method.

a.

Expert Solution
Check Mark

Answer to Problem 12RE

The function y=sin3x+cos4x is increasing in interval (0,0.172) , (0.99,1.57) , (2.14,2.96) and (3.83,4.71) .

Explanation of Solution

Given:

The function is y=sin3x+cos4x,0x2π .

Calculation:

The function is increasing when f(x)>0

  f(x)=3cos3x4sin4x3cos3x4sin4x>0

Below is the graph of f(x)

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 5, Problem 12RE , additional homework tip  1

From graph it can be observed that there are total eight critical points that is

  x=0.172,0.99,1.57,2.14,2.96,3.83,4.71,5.59

Now ,put x=0.1 to check whether function is increasing or decreasing in (0,0.172)

  f(x)=3cos3x4sin4xf(0.1)=3cos3(0.1)4sin4(0.1)f(0.1)=1.30>0

Therefore y=sin3x+cos4x is increasing when x(0,0.172)

Now ,put x=0.5 to check whether function is increasing or decreasing in (0.172,0.99)

  f(x)=3cos3x4sin4xf(0.5)=3cos3(0.5)4sin4(0.5)f(0.5)=3.42<0

Therefore y=sin3x+cos4x is decreasing when x(0.172,0.99)

Now ,put x=1 to check whether function is increasing or decreasing in (0.99,1.57)

  f(x)=3cos3x4sin4xf(1)=3cos3(1)4sin4(1)f(1)=0.057>0

Therefore y=sin3x+cos4x is increasing when x(0.99,1.57)

Now ,put x=2 to check whether function is increasing or decreasing in (1.57,2.14)

  f(x)=3cos3x4sin4xf(2)=3cos3(2)4sin4(2)f(2)=1.07<0

Therefore y=sin3x+cos4x is decreasing when x(1.57,2.14)

Now ,put x=2 to check whether function is increasing or decreasing in (2.14,2.96)

  f(x)=3cos3x4sin4xf(2.4)=3cos3(2.4)4sin4(2.4)f(2.4)=2.52>0

Therefore y=sin3x+cos4x is increasing when x(2.14,2.96)

Now ,put x=3 to check whether function is increasing or decreasing in (2.96,3.83)

  f(x)=3cos3x4sin4xf(3)=3cos3(3)4sin4(3)f(3)=0.58<0

Therefore y=sin3x+cos4x is decreasing when x(2.96,3.83)

Now ,put x=4 to check whether function is increasing or decreasing in (3.83,4.71)

  f(x)=3cos3x4sin4xf(4)=3cos3(4)4sin4(4)f(4)=3.68>0

Therefore y=sin3x+cos4x is increasing when x(3.83,4.71)

Now ,put x=5 to check whether function is increasing or decreasing in (4.71,5.59)

  f(x)=3cos3x4sin4xf(5)=3cos3(5)4sin4(5)f(5)=5.9<0

Therefore y=sin3x+cos4x is decreasing when x(4.71,5.59)

hence, the function y=sin3x+cos4x is increasing in interval (0,0.172) , (0.99,1.57) , (2.14,2.96) and (3.83,4.71) .

b.

To determine

To find the intervals on which the function is decreasing by using analytical method.

b.

Expert Solution
Check Mark

Answer to Problem 12RE

The function y=sin3x+cos4x is decreasing in interval (0.172,0.99) , (1.57,2.14) , (2.96,3.83) and (4.71,5.59) .

Explanation of Solution

Given:

The function is y=sin3x+cos4x,0x2π .

Calculation:

The function is decreasing when f(x)<0

  f(x)=3cos3x4sin4x3cos3x4sin4x>0

Below is the graph of f(x)

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 5, Problem 12RE , additional homework tip  2

From graph it can be observed that there are total eight critical points that is

  x=0.172,0.99,1.57,2.14,2.96,3.83,4.71,5.59

Now ,put x=0.1 to check whether function is increasing or decreasing in (0,0.172)

  f(x)=3cos3x4sin4xf(0.1)=3cos3(0.1)4sin4(0.1)f(0.1)=1.30>0

Therefore y=sin3x+cos4x is increasing when x(0,0.172)

Now ,put x=0.5 to check whether function is increasing or decreasing in (0.172,0.99)

  f(x)=3cos3x4sin4xf(0.5)=3cos3(0.5)4sin4(0.5)f(0.5)=3.42<0

Therefore y=sin3x+cos4x is decreasing when x(0.172,0.99)

Now ,put x=1 to check whether function is increasing or decreasing in (0.99,1.57)

  f(x)=3cos3x4sin4xf(1)=3cos3(1)4sin4(1)f(1)=0.057>0

Therefore y=sin3x+cos4x is increasing when x(0.99,1.57)

Now ,put x=2 to check whether function is increasing or decreasing in (1.57,2.14)

  f(x)=3cos3x4sin4xf(2)=3cos3(2)4sin4(2)f(2)=1.07<0

Therefore y=sin3x+cos4x is decreasing when x(1.57,2.14)

Now ,put x=2 to check whether function is increasing or decreasing in (2.14,2.96)

  f(x)=3cos3x4sin4xf(2.4)=3cos3(2.4)4sin4(2.4)f(2.4)=2.52>0

Therefore y=sin3x+cos4x is increasing when x(2.14,2.96)

Now ,put x=3 to check whether function is increasing or decreasing in (2.96,3.83)

  f(x)=3cos3x4sin4xf(3)=3cos3(3)4sin4(3)f(3)=0.58<0

Therefore y=sin3x+cos4x is decreasing when x(2.96,3.83)

Now ,put x=4 to check whether function is increasing or decreasing in (3.83,4.71)

  f(x)=3cos3x4sin4xf(4)=3cos3(4)4sin4(4)f(4)=3.68>0

Therefore y=sin3x+cos4x is increasing when x(3.83,4.71)

Now ,put x=5 to check whether function is increasing or decreasing in (4.71,5.59)

  f(x)=3cos3x4sin4xf(5)=3cos3(5)4sin4(5)f(5)=5.9<0

Therefore y=sin3x+cos4x is decreasing when x(4.71,5.59)

hence, the function y=sin3x+cos4x is decreasing in interval (0.172,0.99) , (1.57,2.14) , (2.96,3.83) and (4.71,5.59) .

c.

To determine

To find the intervals on which the function is concave up by using analytical method.

c.

Expert Solution
Check Mark

Answer to Problem 12RE

The function y=sin3x+cos4x is concave up in the interval (0.54,1.26) , (1.87,2.59) , (3.4,4.28) and (5.14,5.99) .

Explanation of Solution

Given:

The function is y=sin3x+cos4x,0x2π .

Calculation:

The graph of a twice differentiable function y=f(x) is

Concave up on any interval where f(x)>0 and concave down on any interval where f(x)<0

Since, y=sin3x+cos4x

First derivative : y=3cos3x4sin4x

Second derivative : y=9sin3x16cos4x

below is the graph of y=9sin3x16cos4x

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 5, Problem 12RE , additional homework tip  3

From graph it is clear that , there are total eight critical points that are

  x=0.54,1.26,1.87,2.59,3.4,4.28,5.14,5.99

Now, put x=0.1 to check whether function is concave up or down in the interval (0,0.54)

  f(x)=9sin3x16cos4xf(0.2)=9sin3(0.2)16cos4(0.2)f(0.2)=16.22<0

Therefore, y=sin3x+cos4x is concave down in interval (0,0.54)

Now, put x=1 to check whether function is concave up or down in the interval (0.54,1.26)

  f(x)=9sin3x16cos4xf(1)=9sin3(1)16cos4(1)f(1)=9.18>0

Therefore, y=sin3x+cos4x is concave up in interval (0.54,1.26)

Now, put x=1.5 to check whether function is concave up or down in the interval (1.26,1.87)

  f(x)=9sin3x16cos4xf(1.5)=9sin3(1.5)16cos4(1.5)f(1.5)=6.5<0

Therefore, y=sin3x+cos4x is concave down in interval (1.26,1.87)

Now, put x=2 to check whether function is concave up or down in the interval (1.87,2.59)

  f(x)=9sin3x16cos4xf(2)=9sin3(2)16cos4(2)f(2)=4.8>0

Therefore, y=sin3x+cos4x is concave up in interval (1.87,2.59)

Now, put x=3 to check whether function is concave up or down in the interval (2.59,3.4)

  f(x)=9sin3x16cos4xf(3)=9sin3(3)16cos4(3)f(3)=17.2<0

Therefore, y=sin3x+cos4x is concave down in interval (2.59,3.4)

Now, put x=4 to check whether function is concave up or down in the interval (3.4,4.28)

  f(x)=9sin3x16cos4xf(4)=9sin3(4)16cos4(4)f(4)=20.15>0

Therefore, y=sin3x+cos4x is concave up in interval (3.4,4.28)

Now, put x=5 to check whether function is concave up or down in the interval (4.28,5.14)

  f(x)=9sin3x16cos4xf(5)=9sin3(5)16cos4(5)f(5)=12.38<0

Therefore, y=sin3x+cos4x is concave down in interval (4.28,5.14)

Now, put x=5.2 to check whether function is concave up or down in the interval (5.14,5.99)

  f(x)=9sin3x16cos4xf(5.2)=9sin3(5.2)16cos4(5.2)f(5.2)=4.95>0

Therefore, y=sin3x+cos4x is concave up in interval (5.14,5.99)

Now, put x=6 to check whether function is concave up or down in the interval (5.99,2π)

  f(x)=9sin3x16cos4xf(6)=9sin3(6)16cos4(6)f(6)=0.02<0

Therefore, y=sin3x+cos4x is concave down in interval (5.99,2π)

Hence, the function y=sin3x+cos4x is concave up in the interval (0.54,1.26) , (1.87,2.59) , (3.4,4.28) and (5.14,5.99) .

d.

To determine

To find the intervals on which the function is concave down by using analytical method.

d.

Expert Solution
Check Mark

Answer to Problem 12RE

The function y=sin3x+cos4x is concave down in the interval (0,0.54) , (1.26,1.87) , (2.59,3.4) and (4.28,5.14)

Explanation of Solution

Given:

The function is y=sin3x+cos4x,0x2π .

Calculation:

The graph of a twice differentiable function y=f(x) is

Concave up on any interval where f(x)>0 and concave down on any interval where f(x)<0

Since, y=sin3x+cos4x

First derivative : y=3cos3x4sin4x

Second derivative : y=9sin3x16cos4x

below is the graph of y=9sin3x16cos4x

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 5, Problem 12RE , additional homework tip  4

From graph it is clear that , there are total eight critical points that are

  x=0.54,1.26,1.87,2.59,3.4,4.28,5.14,5.99

Now, put x=0.1 to check whether function is concave up or down in the interval (0,0.54)

  f(x)=9sin3x16cos4xf(0.2)=9sin3(0.2)16cos4(0.2)f(0.2)=16.22<0

Therefore, y=sin3x+cos4x is concave down in interval (0,0.54)

Now, put x=1 to check whether function is concave up or down in the interval (0.54,1.26)

  f(x)=9sin3x16cos4xf(1)=9sin3(1)16cos4(1)f(1)=9.18>0

Therefore, y=sin3x+cos4x is concave up in interval (0.54,1.26)

Now, put x=1.5 to check whether function is concave up or down in the interval (1.26,1.87)

  f(x)=9sin3x16cos4xf(1.5)=9sin3(1.5)16cos4(1.5)f(1.5)=6.5<0

Therefore, y=sin3x+cos4x is concave down in interval (1.26,1.87)

Now, put x=2 to check whether function is concave up or down in the interval (1.87,2.59)

  f(x)=9sin3x16cos4xf(2)=9sin3(2)16cos4(2)f(2)=4.8>0

Therefore, y=sin3x+cos4x is concave up in interval (1.87,2.59)

Now, put x=3 to check whether function is concave up or down in the interval (2.59,3.4)

  f(x)=9sin3x16cos4xf(3)=9sin3(3)16cos4(3)f(3)=17.2<0

Therefore, y=sin3x+cos4x is concave down in interval (2.59,3.4)

Now, put x=4 to check whether function is concave up or down in the interval (3.4,4.28)

  f(x)=9sin3x16cos4xf(4)=9sin3(4)16cos4(4)f(4)=20.15>0

Therefore, y=sin3x+cos4x is concave up in interval (3.4,4.28)

Now, put x=5 to check whether function is concave up or down in the interval (4.28,5.14)

  f(x)=9sin3x16cos4xf(5)=9sin3(5)16cos4(5)f(5)=12.38<0

Therefore, y=sin3x+cos4x is concave down in interval (4.28,5.14)

Now, put x=5.2 to check whether function is concave up or down in the interval (5.14,5.99)

  f(x)=9sin3x16cos4xf(5.2)=9sin3(5.2)16cos4(5.2)f(5.2)=4.95>0

Therefore, y=sin3x+cos4x is concave up in interval (5.14,5.99)

Now, put x=6 to check whether function is concave up or down in the interval (5.99,2π)

  f(x)=9sin3x16cos4xf(6)=9sin3(6)16cos4(6)f(6)=0.02<0

Therefore, y=sin3x+cos4x is concave down in interval (5.99,2π)

Hence, the function y=sin3x+cos4x is concave down in the interval (0,0.54) , (1.26,1.87) , (2.59,3.4) , (4.28,5.14) and (5.99,2π) .

e.

To determine

To find any local extreme values.

e.

Expert Solution
Check Mark

Answer to Problem 12RE

  y=sin3x+cos4x has local maximum value at point (0.176,1.266),(1.57,0),(2.965,1.266),(4.71,2) and (6.28,1) and local minimum value at point (0,1),(0.99,0.51),(3.83,1.80) and (5.59,1.80) .

Explanation of Solution

Given:

The function is y=sin3x+cos4x,0x2π .

Calculation:

Below is the graph of y=sin3x+cos4x

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 5, Problem 12RE , additional homework tip  5

From graph it is clear that y=sin3x+cos4x has local maximum value at point (0.176,1.266),(1.57,0),(2.965,1.266),(4.71,2) and (6.28,1) and local minimum value at point (0,1),(0.99,0.51),(3.83,1.80) and (5.59,1.80)

f.

To determine

To find inflections points.

f.

Expert Solution
Check Mark

Answer to Problem 12RE

The inflection points are x=0.54,1.26,1.87,2.59,3.4,4.28,5.14,5.99

Explanation of Solution

Given:

The function is y=sin3x+cos4x,0x2π .

Calculation:

Inflection point of any function is a point where the graph of function has a tangent line and where the concavity changes.

Since, the intervals in which function is concave up are (0.54,1.26) , (1.87,2.59) , (3.4,4.28) and (5.14,5.99) .

The intervals in which function is concave down are (0,0.54) , (1.26,1.87) , (2.59,3.4) , (4.28,5.14) and (5.99,2π)

Therefore, the inflection points are x=0.54,1.26,1.87,2.59,3.4,4.28,5.14,5.99 .

Chapter 5 Solutions

Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)

Ch. 5.1 - Prob. 11QRCh. 5.1 - Prob. 12QRCh. 5.1 - Prob. 1ECh. 5.1 - Prob. 2ECh. 5.1 - Prob. 3ECh. 5.1 - Prob. 4ECh. 5.1 - Prob. 5ECh. 5.1 - Prob. 6ECh. 5.1 - Prob. 7ECh. 5.1 - Prob. 8ECh. 5.1 - Prob. 9ECh. 5.1 - Prob. 10ECh. 5.1 - Prob. 11ECh. 5.1 - Prob. 12ECh. 5.1 - Prob. 13ECh. 5.1 - Prob. 14ECh. 5.1 - Prob. 15ECh. 5.1 - Prob. 16ECh. 5.1 - Prob. 17ECh. 5.1 - Prob. 18ECh. 5.1 - Prob. 19ECh. 5.1 - Prob. 20ECh. 5.1 - Prob. 21ECh. 5.1 - Prob. 22ECh. 5.1 - Prob. 23ECh. 5.1 - Prob. 24ECh. 5.1 - Prob. 25ECh. 5.1 - Prob. 26ECh. 5.1 - Prob. 27ECh. 5.1 - Prob. 28ECh. 5.1 - Prob. 29ECh. 5.1 - Prob. 30ECh. 5.1 - Prob. 31ECh. 5.1 - Prob. 32ECh. 5.1 - Prob. 33ECh. 5.1 - Prob. 34ECh. 5.1 - Prob. 35ECh. 5.1 - Prob. 36ECh. 5.1 - Prob. 37ECh. 5.1 - Prob. 38ECh. 5.1 - Prob. 39ECh. 5.1 - Prob. 40ECh. 5.1 - Prob. 41ECh. 5.1 - Prob. 42ECh. 5.1 - Prob. 43ECh. 5.1 - Prob. 44ECh. 5.1 - Prob. 45ECh. 5.1 - Prob. 46ECh. 5.1 - Prob. 47ECh. 5.1 - Prob. 48ECh. 5.1 - Prob. 49ECh. 5.1 - Prob. 50ECh. 5.1 - Prob. 51ECh. 5.1 - Prob. 52ECh. 5.1 - Prob. 53ECh. 5.1 - Prob. 54ECh. 5.1 - Prob. 55ECh. 5.2 - Prob. 1QRCh. 5.2 - Prob. 2QRCh. 5.2 - Prob. 3QRCh. 5.2 - Prob. 4QRCh. 5.2 - Prob. 5QRCh. 5.2 - Prob. 6QRCh. 5.2 - Prob. 7QRCh. 5.2 - Prob. 8QRCh. 5.2 - Prob. 9QRCh. 5.2 - Prob. 10QRCh. 5.2 - Prob. 1ECh. 5.2 - Prob. 2ECh. 5.2 - Prob. 3ECh. 5.2 - Prob. 4ECh. 5.2 - Prob. 5ECh. 5.2 - Prob. 6ECh. 5.2 - Prob. 7ECh. 5.2 - Prob. 8ECh. 5.2 - Prob. 9ECh. 5.2 - Prob. 10ECh. 5.2 - Prob. 11ECh. 5.2 - Prob. 12ECh. 5.2 - Prob. 13ECh. 5.2 - Prob. 14ECh. 5.2 - Prob. 15ECh. 5.2 - Prob. 16ECh. 5.2 - Prob. 17ECh. 5.2 - Prob. 18ECh. 5.2 - Prob. 19ECh. 5.2 - Prob. 20ECh. 5.2 - Prob. 21ECh. 5.2 - Prob. 22ECh. 5.2 - Prob. 23ECh. 5.2 - Prob. 24ECh. 5.2 - Prob. 25ECh. 5.2 - Prob. 26ECh. 5.2 - Prob. 27ECh. 5.2 - Prob. 28ECh. 5.2 - Prob. 29ECh. 5.2 - Prob. 30ECh. 5.2 - Prob. 31ECh. 5.2 - Prob. 32ECh. 5.2 - Prob. 33ECh. 5.2 - Prob. 34ECh. 5.2 - Prob. 35ECh. 5.2 - Prob. 36ECh. 5.2 - Prob. 37ECh. 5.2 - Prob. 38ECh. 5.2 - Prob. 39ECh. 5.2 - Prob. 40ECh. 5.2 - Prob. 41ECh. 5.2 - Prob. 42ECh. 5.2 - Prob. 43ECh. 5.2 - Prob. 44ECh. 5.2 - Prob. 45ECh. 5.2 - Prob. 46ECh. 5.2 - Prob. 47ECh. 5.2 - Prob. 48ECh. 5.2 - Prob. 49ECh. 5.2 - Prob. 50ECh. 5.2 - Prob. 51ECh. 5.2 - Prob. 52ECh. 5.2 - Prob. 53ECh. 5.2 - Prob. 54ECh. 5.2 - Prob. 55ECh. 5.2 - Prob. 56ECh. 5.2 - Prob. 57ECh. 5.2 - Prob. 58ECh. 5.2 - Prob. 59ECh. 5.2 - Prob. 60ECh. 5.2 - Prob. 61ECh. 5.2 - Prob. 62ECh. 5.2 - Prob. 63ECh. 5.3 - Prob. 1QRCh. 5.3 - Prob. 2QRCh. 5.3 - Prob. 3QRCh. 5.3 - Prob. 4QRCh. 5.3 - Prob. 5QRCh. 5.3 - Prob. 6QRCh. 5.3 - Prob. 7QRCh. 5.3 - Prob. 8QRCh. 5.3 - Prob. 9QRCh. 5.3 - Prob. 10QRCh. 5.3 - Prob. 1ECh. 5.3 - Prob. 2ECh. 5.3 - Prob. 3ECh. 5.3 - Prob. 4ECh. 5.3 - Prob. 5ECh. 5.3 - Prob. 6ECh. 5.3 - Prob. 7ECh. 5.3 - Prob. 8ECh. 5.3 - Prob. 9ECh. 5.3 - Prob. 10ECh. 5.3 - Prob. 11ECh. 5.3 - Prob. 12ECh. 5.3 - Prob. 13ECh. 5.3 - Prob. 14ECh. 5.3 - Prob. 15ECh. 5.3 - Prob. 16ECh. 5.3 - Prob. 17ECh. 5.3 - Prob. 18ECh. 5.3 - Prob. 19ECh. 5.3 - Prob. 20ECh. 5.3 - Prob. 21ECh. 5.3 - Prob. 22ECh. 5.3 - Prob. 23ECh. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - Prob. 28ECh. 5.3 - Prob. 29ECh. 5.3 - Prob. 30ECh. 5.3 - Prob. 31ECh. 5.3 - Prob. 32ECh. 5.3 - Prob. 33ECh. 5.3 - Prob. 34ECh. 5.3 - Prob. 35ECh. 5.3 - Prob. 36ECh. 5.3 - Prob. 37ECh. 5.3 - Prob. 38ECh. 5.3 - Prob. 39ECh. 5.3 - Prob. 40ECh. 5.3 - Prob. 41ECh. 5.3 - Prob. 42ECh. 5.3 - Prob. 43ECh. 5.3 - Prob. 44ECh. 5.3 - Prob. 45ECh. 5.3 - Prob. 46ECh. 5.3 - Prob. 47ECh. 5.3 - Prob. 48ECh. 5.3 - Prob. 49ECh. 5.3 - Prob. 50ECh. 5.3 - Prob. 51ECh. 5.3 - Prob. 52ECh. 5.3 - Prob. 53ECh. 5.3 - Prob. 54ECh. 5.3 - Prob. 55ECh. 5.3 - Prob. 56ECh. 5.3 - Prob. 57ECh. 5.3 - Prob. 58ECh. 5.3 - Prob. 59ECh. 5.3 - Prob. 60ECh. 5.3 - Prob. 61ECh. 5.3 - Prob. 62ECh. 5.3 - Prob. 63ECh. 5.3 - Prob. 1QQCh. 5.3 - Prob. 2QQCh. 5.3 - Prob. 3QQCh. 5.3 - Prob. 4QQCh. 5.4 - Prob. 1QRCh. 5.4 - Prob. 2QRCh. 5.4 - Prob. 3QRCh. 5.4 - Prob. 4QRCh. 5.4 - Prob. 5QRCh. 5.4 - Prob. 6QRCh. 5.4 - Prob. 7QRCh. 5.4 - Prob. 8QRCh. 5.4 - Prob. 9QRCh. 5.4 - Prob. 10QRCh. 5.4 - Prob. 1ECh. 5.4 - Prob. 2ECh. 5.4 - Prob. 3ECh. 5.4 - Prob. 4ECh. 5.4 - Prob. 5ECh. 5.4 - Prob. 6ECh. 5.4 - Prob. 7ECh. 5.4 - Prob. 8ECh. 5.4 - Prob. 9ECh. 5.4 - Prob. 10ECh. 5.4 - Prob. 11ECh. 5.4 - Prob. 12ECh. 5.4 - Prob. 13ECh. 5.4 - Prob. 14ECh. 5.4 - Prob. 15ECh. 5.4 - Prob. 16ECh. 5.4 - Prob. 17ECh. 5.4 - Prob. 18ECh. 5.4 - Prob. 19ECh. 5.4 - Prob. 20ECh. 5.4 - Prob. 21ECh. 5.4 - Prob. 22ECh. 5.4 - Prob. 23ECh. 5.4 - Prob. 24ECh. 5.4 - Prob. 25ECh. 5.4 - Prob. 26ECh. 5.4 - Prob. 27ECh. 5.4 - Prob. 28ECh. 5.4 - Prob. 29ECh. 5.4 - Prob. 30ECh. 5.4 - Prob. 31ECh. 5.4 - Prob. 32ECh. 5.4 - Prob. 33ECh. 5.4 - Prob. 34ECh. 5.4 - Prob. 35ECh. 5.4 - Prob. 36ECh. 5.4 - Prob. 37ECh. 5.4 - Prob. 38ECh. 5.4 - Prob. 39ECh. 5.4 - Prob. 40ECh. 5.4 - Prob. 41ECh. 5.4 - Prob. 42ECh. 5.4 - Prob. 43ECh. 5.4 - Prob. 44ECh. 5.4 - Prob. 45ECh. 5.4 - Prob. 46ECh. 5.4 - Prob. 47ECh. 5.4 - Prob. 48ECh. 5.4 - Prob. 49ECh. 5.4 - Prob. 50ECh. 5.4 - Prob. 51ECh. 5.4 - Prob. 52ECh. 5.4 - Prob. 53ECh. 5.4 - Prob. 54ECh. 5.4 - Prob. 55ECh. 5.4 - Prob. 56ECh. 5.4 - Prob. 57ECh. 5.4 - Prob. 58ECh. 5.4 - Prob. 59ECh. 5.4 - Prob. 60ECh. 5.4 - Prob. 61ECh. 5.4 - Prob. 62ECh. 5.4 - Prob. 63ECh. 5.4 - Prob. 64ECh. 5.4 - Prob. 65ECh. 5.5 - Prob. 1QRCh. 5.5 - Prob. 2QRCh. 5.5 - Prob. 3QRCh. 5.5 - Prob. 4QRCh. 5.5 - Prob. 5QRCh. 5.5 - Prob. 6QRCh. 5.5 - Prob. 7QRCh. 5.5 - Prob. 8QRCh. 5.5 - Prob. 9QRCh. 5.5 - Prob. 10QRCh. 5.5 - Prob. 1ECh. 5.5 - Prob. 2ECh. 5.5 - Prob. 3ECh. 5.5 - Prob. 4ECh. 5.5 - Prob. 5ECh. 5.5 - Prob. 6ECh. 5.5 - Prob. 7ECh. 5.5 - Prob. 8ECh. 5.5 - Prob. 9ECh. 5.5 - Prob. 10ECh. 5.5 - Prob. 11ECh. 5.5 - Prob. 12ECh. 5.5 - Prob. 13ECh. 5.5 - Prob. 14ECh. 5.5 - Prob. 15ECh. 5.5 - Prob. 16ECh. 5.5 - Prob. 17ECh. 5.5 - Prob. 18ECh. 5.5 - Prob. 19ECh. 5.5 - Prob. 20ECh. 5.5 - Prob. 21ECh. 5.5 - Prob. 22ECh. 5.5 - Prob. 23ECh. 5.5 - Prob. 24ECh. 5.5 - Prob. 25ECh. 5.5 - Prob. 26ECh. 5.5 - Prob. 27ECh. 5.5 - Prob. 28ECh. 5.5 - Prob. 29ECh. 5.5 - Prob. 30ECh. 5.5 - Prob. 31ECh. 5.5 - Prob. 32ECh. 5.5 - Prob. 33ECh. 5.5 - Prob. 34ECh. 5.5 - Prob. 35ECh. 5.5 - Prob. 36ECh. 5.5 - Prob. 37ECh. 5.5 - Prob. 38ECh. 5.5 - Prob. 39ECh. 5.5 - Prob. 40ECh. 5.5 - Prob. 41ECh. 5.5 - Prob. 42ECh. 5.5 - Prob. 43ECh. 5.5 - Prob. 44ECh. 5.5 - Prob. 45ECh. 5.5 - Prob. 46ECh. 5.5 - Prob. 47ECh. 5.5 - Prob. 48ECh. 5.5 - Prob. 49ECh. 5.5 - Prob. 50ECh. 5.5 - Prob. 51ECh. 5.5 - Prob. 52ECh. 5.5 - Prob. 53ECh. 5.5 - Prob. 54ECh. 5.5 - Prob. 55ECh. 5.5 - Prob. 56ECh. 5.5 - Prob. 57ECh. 5.5 - Prob. 58ECh. 5.5 - Prob. 59ECh. 5.5 - Prob. 60ECh. 5.5 - Prob. 61ECh. 5.5 - Prob. 62ECh. 5.5 - Prob. 63ECh. 5.5 - Prob. 64ECh. 5.5 - Prob. 65ECh. 5.5 - Prob. 66ECh. 5.5 - Prob. 67ECh. 5.5 - Prob. 68ECh. 5.5 - Prob. 69ECh. 5.5 - Prob. 70ECh. 5.5 - Prob. 71ECh. 5.5 - Prob. 72ECh. 5.6 - Prob. 1QRCh. 5.6 - Prob. 2QRCh. 5.6 - Prob. 3QRCh. 5.6 - Prob. 4QRCh. 5.6 - Prob. 5QRCh. 5.6 - Prob. 6QRCh. 5.6 - Prob. 7QRCh. 5.6 - Prob. 8QRCh. 5.6 - Prob. 9QRCh. 5.6 - Prob. 10QRCh. 5.6 - Prob. 1ECh. 5.6 - Prob. 2ECh. 5.6 - Prob. 3ECh. 5.6 - Prob. 4ECh. 5.6 - Prob. 5ECh. 5.6 - Prob. 6ECh. 5.6 - Prob. 7ECh. 5.6 - Prob. 8ECh. 5.6 - Prob. 9ECh. 5.6 - Prob. 10ECh. 5.6 - Prob. 11ECh. 5.6 - Prob. 12ECh. 5.6 - Prob. 13ECh. 5.6 - Prob. 14ECh. 5.6 - Prob. 15ECh. 5.6 - Prob. 16ECh. 5.6 - Prob. 17ECh. 5.6 - Prob. 18ECh. 5.6 - Prob. 19ECh. 5.6 - Prob. 20ECh. 5.6 - Prob. 21ECh. 5.6 - Prob. 22ECh. 5.6 - Prob. 23ECh. 5.6 - Prob. 24ECh. 5.6 - Prob. 25ECh. 5.6 - Prob. 26ECh. 5.6 - Prob. 27ECh. 5.6 - Prob. 28ECh. 5.6 - Prob. 29ECh. 5.6 - Prob. 30ECh. 5.6 - Prob. 31ECh. 5.6 - Prob. 32ECh. 5.6 - Prob. 33ECh. 5.6 - Prob. 34ECh. 5.6 - Prob. 35ECh. 5.6 - Prob. 36ECh. 5.6 - Prob. 37ECh. 5.6 - Prob. 38ECh. 5.6 - Prob. 39ECh. 5.6 - Prob. 40ECh. 5.6 - Prob. 41ECh. 5.6 - Prob. 42ECh. 5.6 - Prob. 43ECh. 5.6 - Prob. 44ECh. 5.6 - Prob. 45ECh. 5.6 - Prob. 46ECh. 5.6 - Prob. 47ECh. 5.6 - Prob. 1QQCh. 5.6 - Prob. 2QQCh. 5.6 - Prob. 3QQCh. 5.6 - Prob. 4QQCh. 5 - Prob. 1RECh. 5 - Prob. 2RECh. 5 - Prob. 3RECh. 5 - Prob. 4RECh. 5 - Prob. 5RECh. 5 - Prob. 6RECh. 5 - Prob. 7RECh. 5 - Prob. 8RECh. 5 - Prob. 9RECh. 5 - Prob. 10RECh. 5 - Prob. 11RECh. 5 - Prob. 12RECh. 5 - Prob. 13RECh. 5 - Prob. 14RECh. 5 - Prob. 15RECh. 5 - Prob. 16RECh. 5 - Prob. 17RECh. 5 - Prob. 18RECh. 5 - Prob. 19RECh. 5 - Prob. 20RECh. 5 - Prob. 21RECh. 5 - Prob. 22RECh. 5 - Prob. 23RECh. 5 - Prob. 24RECh. 5 - Prob. 25RECh. 5 - Prob. 26RECh. 5 - Prob. 27RECh. 5 - Prob. 28RECh. 5 - Prob. 29RECh. 5 - Prob. 30RECh. 5 - Prob. 31RECh. 5 - Prob. 32RECh. 5 - Prob. 33RECh. 5 - Prob. 34RECh. 5 - Prob. 35RECh. 5 - Prob. 36RECh. 5 - Prob. 37RECh. 5 - Prob. 38RECh. 5 - Prob. 39RECh. 5 - Prob. 40RECh. 5 - Prob. 41RECh. 5 - Prob. 42RECh. 5 - Prob. 43RECh. 5 - Prob. 44RECh. 5 - Prob. 45RECh. 5 - Prob. 46RECh. 5 - Prob. 47RECh. 5 - Prob. 48RECh. 5 - Prob. 49RECh. 5 - Prob. 50RECh. 5 - Prob. 51RECh. 5 - Prob. 52RECh. 5 - Prob. 53RECh. 5 - Prob. 54RECh. 5 - Prob. 55RECh. 5 - Prob. 56RECh. 5 - Prob. 57RECh. 5 - Prob. 58RECh. 5 - Prob. 59RECh. 5 - Prob. 60RECh. 5 - Prob. 61RECh. 5 - Prob. 62RECh. 5 - Prob. 63RECh. 5 - Prob. 64RECh. 5 - Prob. 65RECh. 5 - Prob. 66RECh. 5 - Prob. 67RECh. 5 - Prob. 68RECh. 5 - Prob. 69RECh. 5 - Prob. 70RECh. 5 - Prob. 71RECh. 5 - Prob. 72RE
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY