Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
4th Edition
ISBN: 9780133178579
Author: Ross L. Finney
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 15RE

a.

To determine

To find the intervals on which the function is increasing by using analytical method.

a.

Expert Solution
Check Mark

Answer to Problem 15RE

The function is increasing in interval (0,0.89) .

Explanation of Solution

Given:

The function is

  y=x4/5(2x) .

Calculation:

The function y=x4/5(2x) is increasing when f(x)>0

  f(x)=x4/5+45x1/5(2x)=85x1/595x4/5

Now put f(x)=0 to find critical points

  85x1/595x4/5=015x1/5(89x)=0x1/5089x=0x=89=0.89

So , there are three intervals that is (,0),(0,0.89) and (0.89,) to check whether f(x)>0 or f(x)<0

put x=1 to check whether the function is increasing or decreasing in (,0)

  f(x)=85x1/595x4/5=85(1)1/595(1)4/5=3.4<0

put x=0.5 to check whether the function is increasing or decreasing in (0,0.89)

  f(x)=85x1/595x4/5=85(0.5)1/595(0.5)4/5=0.80>0

put x=1 to check whether the function is increasing or decreasing in (0.89,)

  f(x)=85x1/595x4/5=85(1)1/595(1)4/5=0.2<0

Therefore , the function is increasing in interval (0,0.89)

Below is the graph of f(x)=85x1/595x4/5

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 5, Problem 15RE , additional homework tip  1

From graph of f(x)=85x1/595x4/5 it is clear that the function is increasing in interval (0,0.89) .

b.

To determine

To find the intervals on which the function is decreasing by using analytical method.

b.

Expert Solution
Check Mark

Answer to Problem 15RE

The function is decreasing in interval (,0) and (0.89,)

Explanation of Solution

Given:

The function is

  y=x4/5(2x) .

Calculation:

The function y=x4/5(2x) is decreasing when f(x)<0

  f(x)=x4/5+45x1/5(2x)=85x1/595x4/5

Now put f(x)=0 to find critical points

  85x1/595x4/5=015x1/5(89x)=0x1/5089x=0x=89=0.89

So , there are three intervals that is (,0),(0,0.89) and (0.89,) to check whether f(x)>0 or f(x)<0

put x=1 to check whether the function is increasing or decreasing in (,0)

  f(x)=85x1/595x4/5=85(1)1/595(1)4/5=3.4<0

put x=0.5 to check whether the function is increasing or decreasing in (0,0.89)

  f(x)=85x1/595x4/5=85(0.5)1/595(0.5)4/5=0.80>0

put x=1 to check whether the function is increasing or decreasing in (0.89,)

  f(x)=85x1/595x4/5=85(1)1/595(1)4/5=0.2<0

Therefore , the function is decreasing in interval (,0) and (0.89,) .

Below is the graph of f(x)=85x1/595x4/5

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 5, Problem 15RE , additional homework tip  2

From graph of f(x)=85x1/595x4/5 it is clear that the function is decreasing in interval (,0) and (0.89,)

c.

To determine

To find the intervals on which the function is concave up by using analytical method.

c.

Expert Solution
Check Mark

Answer to Problem 15RE

The Function y=x4/5(2x) is concave up in interval (,29).

Explanation of Solution

Given:

The function is y=x4/5(2x) .

Calculation:

The graph of a twice differentiable function y=f(x) is

Concave up on any interval where f(x)>0 and concave down on any interval where f(x)<0

Since, y=x4/5(2x)

First derivative : y=85x1/595x4/5

Second derivative : y=825x6/53625x1/5

Now, put f(x)=0 to find critical points

  825x6/53625x1/5=0425x6/5(2+9x)=0x02+9x=0x=29=0.23

Therefore , there are three intervals that is (,29) , (29,0) and (0,)

check the value of f(x) in interval (,29) , (29,0) and (0,)

Now for x(,29) test for x=1

  f(x)=825x6/53625x1/5f(1)=825(1)6/53625(1)1/5=1.12>0

Now for x(29,0) test for x=0.1

  f(x)=825x6/53625x1/5f(0.1)=825(0.1)6/53625(0.1)1/5=2.7<0

Now for x(0,) test for x=1

  f(x)=825x6/53625x1/5f(1)=825(1)6/53625(1)1/5=1.76<0

Therefore, the Function y=x4/5(2x) is concave up in interval (,29) .

Below is the graph of f(x)=825x6/53625x1/5

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 5, Problem 15RE , additional homework tip  3

From graph it is clear that, the Function y=x4/5(2x) is concave up in interval (,29) .

d.

To determine

To find the intervals on which the function is concave down by using analytical method.

d.

Expert Solution
Check Mark

Answer to Problem 15RE

The Function y=x4/5(2x) is concave down in interval (29,0) and (0,)

Explanation of Solution

Given:

The function is y=x4/5(2x) .

Calculation:

The graph of a twice differentiable function y=f(x) is

Concave up on any interval where f(x)>0 and concave down on any interval where f(x)<0

Since, y=x4/5(2x)

First derivative : y=85x1/595x4/5

Second derivative : y=825x6/53625x1/5

Now, put f(x)=0 to find critical points

  825x6/53625x1/5=0425x6/5(2+9x)=0x02+9x=0x=29=0.23

Therefore , there are three intervals that is (,29) , (29,0) and (0,)

check the value of f(x) in interval (,29) , (29,0) and (0,)

Now for x(,29) test for x=1

  f(x)=825x6/53625x1/5f(1)=825(1)6/53625(1)1/5=1.12>0

Now for x(29,0) test for x=0.1

  f(x)=825x6/53625x1/5f(0.1)=825(0.1)6/53625(0.1)1/5=2.7<0

Now for x(0,) test for x=1

  f(x)=825x6/53625x1/5f(1)=825(1)6/53625(1)1/5=1.76<0

Therefore, the Function y=x4/5(2x) is concave down in interval (29,0) and (0,)

Below is the graph of f(x)=825x6/53625x1/5

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 5, Problem 15RE , additional homework tip  4

From graph it is clear that, the Function y=x4/5(2x) is concave down in interval (29,0) and (0,) .

e.

To determine

To find any local extreme values.

e.

Expert Solution
Check Mark

Answer to Problem 15RE

The function y=x4/5(2x) has local maxima at point (0.88,1.01) and local minima at (0,0)

Explanation of Solution

Given:

The function is y=x4/5(2x) .

Calculation:

Graph of y=x4/5(2x) is given below

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 5, Problem 15RE , additional homework tip  5

From graph it is clear that the function y=x4/5(2x) has local maxima at point (0.88,1.01) and local minima at (0,0) .

f.

To determine

To find inflections points.

f.

Expert Solution
Check Mark

Answer to Problem 15RE

The inflection point is at x=29 .

Explanation of Solution

Given:

The function is y=x4/5(2x) .

Calculation:

Inflection point of any function is a point where the graph of function has a tangent line and where the concavity changes.

Since, y=x4/5(2x) changes concavity in interval (,29) , (29,0) and (0,) , and remains concave down in interval (29,0) and (0,) .

Therefore, the inflection point is at x=29 .

Chapter 5 Solutions

Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)

Ch. 5.1 - Prob. 11QRCh. 5.1 - Prob. 12QRCh. 5.1 - Prob. 1ECh. 5.1 - Prob. 2ECh. 5.1 - Prob. 3ECh. 5.1 - Prob. 4ECh. 5.1 - Prob. 5ECh. 5.1 - Prob. 6ECh. 5.1 - Prob. 7ECh. 5.1 - Prob. 8ECh. 5.1 - Prob. 9ECh. 5.1 - Prob. 10ECh. 5.1 - Prob. 11ECh. 5.1 - Prob. 12ECh. 5.1 - Prob. 13ECh. 5.1 - Prob. 14ECh. 5.1 - Prob. 15ECh. 5.1 - Prob. 16ECh. 5.1 - Prob. 17ECh. 5.1 - Prob. 18ECh. 5.1 - Prob. 19ECh. 5.1 - Prob. 20ECh. 5.1 - Prob. 21ECh. 5.1 - Prob. 22ECh. 5.1 - Prob. 23ECh. 5.1 - Prob. 24ECh. 5.1 - Prob. 25ECh. 5.1 - Prob. 26ECh. 5.1 - Prob. 27ECh. 5.1 - Prob. 28ECh. 5.1 - Prob. 29ECh. 5.1 - Prob. 30ECh. 5.1 - Prob. 31ECh. 5.1 - Prob. 32ECh. 5.1 - Prob. 33ECh. 5.1 - Prob. 34ECh. 5.1 - Prob. 35ECh. 5.1 - Prob. 36ECh. 5.1 - Prob. 37ECh. 5.1 - Prob. 38ECh. 5.1 - Prob. 39ECh. 5.1 - Prob. 40ECh. 5.1 - Prob. 41ECh. 5.1 - Prob. 42ECh. 5.1 - Prob. 43ECh. 5.1 - Prob. 44ECh. 5.1 - Prob. 45ECh. 5.1 - Prob. 46ECh. 5.1 - Prob. 47ECh. 5.1 - Prob. 48ECh. 5.1 - Prob. 49ECh. 5.1 - Prob. 50ECh. 5.1 - Prob. 51ECh. 5.1 - Prob. 52ECh. 5.1 - Prob. 53ECh. 5.1 - Prob. 54ECh. 5.1 - Prob. 55ECh. 5.2 - Prob. 1QRCh. 5.2 - Prob. 2QRCh. 5.2 - Prob. 3QRCh. 5.2 - Prob. 4QRCh. 5.2 - Prob. 5QRCh. 5.2 - Prob. 6QRCh. 5.2 - Prob. 7QRCh. 5.2 - Prob. 8QRCh. 5.2 - Prob. 9QRCh. 5.2 - Prob. 10QRCh. 5.2 - Prob. 1ECh. 5.2 - Prob. 2ECh. 5.2 - Prob. 3ECh. 5.2 - Prob. 4ECh. 5.2 - Prob. 5ECh. 5.2 - Prob. 6ECh. 5.2 - Prob. 7ECh. 5.2 - Prob. 8ECh. 5.2 - Prob. 9ECh. 5.2 - Prob. 10ECh. 5.2 - Prob. 11ECh. 5.2 - Prob. 12ECh. 5.2 - Prob. 13ECh. 5.2 - Prob. 14ECh. 5.2 - Prob. 15ECh. 5.2 - Prob. 16ECh. 5.2 - Prob. 17ECh. 5.2 - Prob. 18ECh. 5.2 - Prob. 19ECh. 5.2 - Prob. 20ECh. 5.2 - Prob. 21ECh. 5.2 - Prob. 22ECh. 5.2 - Prob. 23ECh. 5.2 - Prob. 24ECh. 5.2 - Prob. 25ECh. 5.2 - Prob. 26ECh. 5.2 - Prob. 27ECh. 5.2 - Prob. 28ECh. 5.2 - Prob. 29ECh. 5.2 - Prob. 30ECh. 5.2 - Prob. 31ECh. 5.2 - Prob. 32ECh. 5.2 - Prob. 33ECh. 5.2 - Prob. 34ECh. 5.2 - Prob. 35ECh. 5.2 - Prob. 36ECh. 5.2 - Prob. 37ECh. 5.2 - Prob. 38ECh. 5.2 - Prob. 39ECh. 5.2 - Prob. 40ECh. 5.2 - Prob. 41ECh. 5.2 - Prob. 42ECh. 5.2 - Prob. 43ECh. 5.2 - Prob. 44ECh. 5.2 - Prob. 45ECh. 5.2 - Prob. 46ECh. 5.2 - Prob. 47ECh. 5.2 - Prob. 48ECh. 5.2 - Prob. 49ECh. 5.2 - Prob. 50ECh. 5.2 - Prob. 51ECh. 5.2 - Prob. 52ECh. 5.2 - Prob. 53ECh. 5.2 - Prob. 54ECh. 5.2 - Prob. 55ECh. 5.2 - Prob. 56ECh. 5.2 - Prob. 57ECh. 5.2 - Prob. 58ECh. 5.2 - Prob. 59ECh. 5.2 - Prob. 60ECh. 5.2 - Prob. 61ECh. 5.2 - Prob. 62ECh. 5.2 - Prob. 63ECh. 5.3 - Prob. 1QRCh. 5.3 - Prob. 2QRCh. 5.3 - Prob. 3QRCh. 5.3 - Prob. 4QRCh. 5.3 - Prob. 5QRCh. 5.3 - Prob. 6QRCh. 5.3 - Prob. 7QRCh. 5.3 - Prob. 8QRCh. 5.3 - Prob. 9QRCh. 5.3 - Prob. 10QRCh. 5.3 - Prob. 1ECh. 5.3 - Prob. 2ECh. 5.3 - Prob. 3ECh. 5.3 - Prob. 4ECh. 5.3 - Prob. 5ECh. 5.3 - Prob. 6ECh. 5.3 - Prob. 7ECh. 5.3 - Prob. 8ECh. 5.3 - Prob. 9ECh. 5.3 - Prob. 10ECh. 5.3 - Prob. 11ECh. 5.3 - Prob. 12ECh. 5.3 - Prob. 13ECh. 5.3 - Prob. 14ECh. 5.3 - Prob. 15ECh. 5.3 - Prob. 16ECh. 5.3 - Prob. 17ECh. 5.3 - Prob. 18ECh. 5.3 - Prob. 19ECh. 5.3 - Prob. 20ECh. 5.3 - Prob. 21ECh. 5.3 - Prob. 22ECh. 5.3 - Prob. 23ECh. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - Prob. 28ECh. 5.3 - Prob. 29ECh. 5.3 - Prob. 30ECh. 5.3 - Prob. 31ECh. 5.3 - Prob. 32ECh. 5.3 - Prob. 33ECh. 5.3 - Prob. 34ECh. 5.3 - Prob. 35ECh. 5.3 - Prob. 36ECh. 5.3 - Prob. 37ECh. 5.3 - Prob. 38ECh. 5.3 - Prob. 39ECh. 5.3 - Prob. 40ECh. 5.3 - Prob. 41ECh. 5.3 - Prob. 42ECh. 5.3 - Prob. 43ECh. 5.3 - Prob. 44ECh. 5.3 - Prob. 45ECh. 5.3 - Prob. 46ECh. 5.3 - Prob. 47ECh. 5.3 - Prob. 48ECh. 5.3 - Prob. 49ECh. 5.3 - Prob. 50ECh. 5.3 - Prob. 51ECh. 5.3 - Prob. 52ECh. 5.3 - Prob. 53ECh. 5.3 - Prob. 54ECh. 5.3 - Prob. 55ECh. 5.3 - Prob. 56ECh. 5.3 - Prob. 57ECh. 5.3 - Prob. 58ECh. 5.3 - Prob. 59ECh. 5.3 - Prob. 60ECh. 5.3 - Prob. 61ECh. 5.3 - Prob. 62ECh. 5.3 - Prob. 63ECh. 5.3 - Prob. 1QQCh. 5.3 - Prob. 2QQCh. 5.3 - Prob. 3QQCh. 5.3 - Prob. 4QQCh. 5.4 - Prob. 1QRCh. 5.4 - Prob. 2QRCh. 5.4 - Prob. 3QRCh. 5.4 - Prob. 4QRCh. 5.4 - Prob. 5QRCh. 5.4 - Prob. 6QRCh. 5.4 - Prob. 7QRCh. 5.4 - Prob. 8QRCh. 5.4 - Prob. 9QRCh. 5.4 - Prob. 10QRCh. 5.4 - Prob. 1ECh. 5.4 - Prob. 2ECh. 5.4 - Prob. 3ECh. 5.4 - Prob. 4ECh. 5.4 - Prob. 5ECh. 5.4 - Prob. 6ECh. 5.4 - Prob. 7ECh. 5.4 - Prob. 8ECh. 5.4 - Prob. 9ECh. 5.4 - Prob. 10ECh. 5.4 - Prob. 11ECh. 5.4 - Prob. 12ECh. 5.4 - Prob. 13ECh. 5.4 - Prob. 14ECh. 5.4 - Prob. 15ECh. 5.4 - Prob. 16ECh. 5.4 - Prob. 17ECh. 5.4 - Prob. 18ECh. 5.4 - Prob. 19ECh. 5.4 - Prob. 20ECh. 5.4 - Prob. 21ECh. 5.4 - Prob. 22ECh. 5.4 - Prob. 23ECh. 5.4 - Prob. 24ECh. 5.4 - Prob. 25ECh. 5.4 - Prob. 26ECh. 5.4 - Prob. 27ECh. 5.4 - Prob. 28ECh. 5.4 - Prob. 29ECh. 5.4 - Prob. 30ECh. 5.4 - Prob. 31ECh. 5.4 - Prob. 32ECh. 5.4 - Prob. 33ECh. 5.4 - Prob. 34ECh. 5.4 - Prob. 35ECh. 5.4 - Prob. 36ECh. 5.4 - Prob. 37ECh. 5.4 - Prob. 38ECh. 5.4 - Prob. 39ECh. 5.4 - Prob. 40ECh. 5.4 - Prob. 41ECh. 5.4 - Prob. 42ECh. 5.4 - Prob. 43ECh. 5.4 - Prob. 44ECh. 5.4 - Prob. 45ECh. 5.4 - Prob. 46ECh. 5.4 - Prob. 47ECh. 5.4 - Prob. 48ECh. 5.4 - Prob. 49ECh. 5.4 - Prob. 50ECh. 5.4 - Prob. 51ECh. 5.4 - Prob. 52ECh. 5.4 - Prob. 53ECh. 5.4 - Prob. 54ECh. 5.4 - Prob. 55ECh. 5.4 - Prob. 56ECh. 5.4 - Prob. 57ECh. 5.4 - Prob. 58ECh. 5.4 - Prob. 59ECh. 5.4 - Prob. 60ECh. 5.4 - Prob. 61ECh. 5.4 - Prob. 62ECh. 5.4 - Prob. 63ECh. 5.4 - Prob. 64ECh. 5.4 - Prob. 65ECh. 5.5 - Prob. 1QRCh. 5.5 - Prob. 2QRCh. 5.5 - Prob. 3QRCh. 5.5 - Prob. 4QRCh. 5.5 - Prob. 5QRCh. 5.5 - Prob. 6QRCh. 5.5 - Prob. 7QRCh. 5.5 - Prob. 8QRCh. 5.5 - Prob. 9QRCh. 5.5 - Prob. 10QRCh. 5.5 - Prob. 1ECh. 5.5 - Prob. 2ECh. 5.5 - Prob. 3ECh. 5.5 - Prob. 4ECh. 5.5 - Prob. 5ECh. 5.5 - Prob. 6ECh. 5.5 - Prob. 7ECh. 5.5 - Prob. 8ECh. 5.5 - Prob. 9ECh. 5.5 - Prob. 10ECh. 5.5 - Prob. 11ECh. 5.5 - Prob. 12ECh. 5.5 - Prob. 13ECh. 5.5 - Prob. 14ECh. 5.5 - Prob. 15ECh. 5.5 - Prob. 16ECh. 5.5 - Prob. 17ECh. 5.5 - Prob. 18ECh. 5.5 - Prob. 19ECh. 5.5 - Prob. 20ECh. 5.5 - Prob. 21ECh. 5.5 - Prob. 22ECh. 5.5 - Prob. 23ECh. 5.5 - Prob. 24ECh. 5.5 - Prob. 25ECh. 5.5 - Prob. 26ECh. 5.5 - Prob. 27ECh. 5.5 - Prob. 28ECh. 5.5 - Prob. 29ECh. 5.5 - Prob. 30ECh. 5.5 - Prob. 31ECh. 5.5 - Prob. 32ECh. 5.5 - Prob. 33ECh. 5.5 - Prob. 34ECh. 5.5 - Prob. 35ECh. 5.5 - Prob. 36ECh. 5.5 - Prob. 37ECh. 5.5 - Prob. 38ECh. 5.5 - Prob. 39ECh. 5.5 - Prob. 40ECh. 5.5 - Prob. 41ECh. 5.5 - Prob. 42ECh. 5.5 - Prob. 43ECh. 5.5 - Prob. 44ECh. 5.5 - Prob. 45ECh. 5.5 - Prob. 46ECh. 5.5 - Prob. 47ECh. 5.5 - Prob. 48ECh. 5.5 - Prob. 49ECh. 5.5 - Prob. 50ECh. 5.5 - Prob. 51ECh. 5.5 - Prob. 52ECh. 5.5 - Prob. 53ECh. 5.5 - Prob. 54ECh. 5.5 - Prob. 55ECh. 5.5 - Prob. 56ECh. 5.5 - Prob. 57ECh. 5.5 - Prob. 58ECh. 5.5 - Prob. 59ECh. 5.5 - Prob. 60ECh. 5.5 - Prob. 61ECh. 5.5 - Prob. 62ECh. 5.5 - Prob. 63ECh. 5.5 - Prob. 64ECh. 5.5 - Prob. 65ECh. 5.5 - Prob. 66ECh. 5.5 - Prob. 67ECh. 5.5 - Prob. 68ECh. 5.5 - Prob. 69ECh. 5.5 - Prob. 70ECh. 5.5 - Prob. 71ECh. 5.5 - Prob. 72ECh. 5.6 - Prob. 1QRCh. 5.6 - Prob. 2QRCh. 5.6 - Prob. 3QRCh. 5.6 - Prob. 4QRCh. 5.6 - Prob. 5QRCh. 5.6 - Prob. 6QRCh. 5.6 - Prob. 7QRCh. 5.6 - Prob. 8QRCh. 5.6 - Prob. 9QRCh. 5.6 - Prob. 10QRCh. 5.6 - Prob. 1ECh. 5.6 - Prob. 2ECh. 5.6 - Prob. 3ECh. 5.6 - Prob. 4ECh. 5.6 - Prob. 5ECh. 5.6 - Prob. 6ECh. 5.6 - Prob. 7ECh. 5.6 - Prob. 8ECh. 5.6 - Prob. 9ECh. 5.6 - Prob. 10ECh. 5.6 - Prob. 11ECh. 5.6 - Prob. 12ECh. 5.6 - Prob. 13ECh. 5.6 - Prob. 14ECh. 5.6 - Prob. 15ECh. 5.6 - Prob. 16ECh. 5.6 - Prob. 17ECh. 5.6 - Prob. 18ECh. 5.6 - Prob. 19ECh. 5.6 - Prob. 20ECh. 5.6 - Prob. 21ECh. 5.6 - Prob. 22ECh. 5.6 - Prob. 23ECh. 5.6 - Prob. 24ECh. 5.6 - Prob. 25ECh. 5.6 - Prob. 26ECh. 5.6 - Prob. 27ECh. 5.6 - Prob. 28ECh. 5.6 - Prob. 29ECh. 5.6 - Prob. 30ECh. 5.6 - Prob. 31ECh. 5.6 - Prob. 32ECh. 5.6 - Prob. 33ECh. 5.6 - Prob. 34ECh. 5.6 - Prob. 35ECh. 5.6 - Prob. 36ECh. 5.6 - Prob. 37ECh. 5.6 - Prob. 38ECh. 5.6 - Prob. 39ECh. 5.6 - Prob. 40ECh. 5.6 - Prob. 41ECh. 5.6 - Prob. 42ECh. 5.6 - Prob. 43ECh. 5.6 - Prob. 44ECh. 5.6 - Prob. 45ECh. 5.6 - Prob. 46ECh. 5.6 - Prob. 47ECh. 5.6 - Prob. 1QQCh. 5.6 - Prob. 2QQCh. 5.6 - Prob. 3QQCh. 5.6 - Prob. 4QQCh. 5 - Prob. 1RECh. 5 - Prob. 2RECh. 5 - Prob. 3RECh. 5 - Prob. 4RECh. 5 - Prob. 5RECh. 5 - Prob. 6RECh. 5 - Prob. 7RECh. 5 - Prob. 8RECh. 5 - Prob. 9RECh. 5 - Prob. 10RECh. 5 - Prob. 11RECh. 5 - Prob. 12RECh. 5 - Prob. 13RECh. 5 - Prob. 14RECh. 5 - Prob. 15RECh. 5 - Prob. 16RECh. 5 - Prob. 17RECh. 5 - Prob. 18RECh. 5 - Prob. 19RECh. 5 - Prob. 20RECh. 5 - Prob. 21RECh. 5 - Prob. 22RECh. 5 - Prob. 23RECh. 5 - Prob. 24RECh. 5 - Prob. 25RECh. 5 - Prob. 26RECh. 5 - Prob. 27RECh. 5 - Prob. 28RECh. 5 - Prob. 29RECh. 5 - Prob. 30RECh. 5 - Prob. 31RECh. 5 - Prob. 32RECh. 5 - Prob. 33RECh. 5 - Prob. 34RECh. 5 - Prob. 35RECh. 5 - Prob. 36RECh. 5 - Prob. 37RECh. 5 - Prob. 38RECh. 5 - Prob. 39RECh. 5 - Prob. 40RECh. 5 - Prob. 41RECh. 5 - Prob. 42RECh. 5 - Prob. 43RECh. 5 - Prob. 44RECh. 5 - Prob. 45RECh. 5 - Prob. 46RECh. 5 - Prob. 47RECh. 5 - Prob. 48RECh. 5 - Prob. 49RECh. 5 - Prob. 50RECh. 5 - Prob. 51RECh. 5 - Prob. 52RECh. 5 - Prob. 53RECh. 5 - Prob. 54RECh. 5 - Prob. 55RECh. 5 - Prob. 56RECh. 5 - Prob. 57RECh. 5 - Prob. 58RECh. 5 - Prob. 59RECh. 5 - Prob. 60RECh. 5 - Prob. 61RECh. 5 - Prob. 62RECh. 5 - Prob. 63RECh. 5 - Prob. 64RECh. 5 - Prob. 65RECh. 5 - Prob. 66RECh. 5 - Prob. 67RECh. 5 - Prob. 68RECh. 5 - Prob. 69RECh. 5 - Prob. 70RECh. 5 - Prob. 71RECh. 5 - Prob. 72RE
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY