
Concept explainers
a.
Tofindthe interval on which the function
a.

Answer to Problem 3RE
The function is then increasing for
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Now setting the derivative equal to zero to find the critical values,
Therefore, the critical values are
From the critical values the possible intervals are
Now to determine which of the intervals is increasing,
Consider
Consider
Consider
Consider
Therefore, the function is increasing for
b.
To find the interval on which the function
b.

Answer to Problem 3RE
The function is decreasing for
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Now setting the derivative equal to zero to find the critical values,
Therefore, the critical values are
From the critical values the possible intervals are
Now to determine which of the intervals is decreasing,
Consider
Consider
Consider
Consider
Therefore, the function is decreasing for
c.
To find the interval on which the function
c.

Answer to Problem 3RE
The function is concave up for
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Factor out
Now to find the possible points of inflection,
Equating
This polynomial does not appear to be factorable so solve for
Therefore, this has no real solution so there are no values of
Hence,
Since
Therefore, the function is concave up for
d.
To find the interval on which the function
d.

Answer to Problem 3RE
The function is concave down for no values of
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Factor out
Now to find the possible points of inflection,
Equating
This polynomial does not appear to be factorable so solve for
Therefore, this has no real solution so there are no values of
Hence,
Since
Therefore, the function is concave down for no values of
e.
To find the interval on which the function
e.

Answer to Problem 3RE
The function haslocal extreme values are at
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Here the derivative is undefined if
Now setting the derivative equal to zero to find the critical values,
The critical values include all the values that makes
Then the possible intervals are given by
Now to determine whether the function is increasing or decreasing on these intervals by substituting a value for
Consider
Consider
Consider
Consider
Therefore,
Since
The local extreme are then local minimums at
Therefore, the function has local extreme values are at
f.
To find the interval on which the function
f.

Answer to Problem 3RE
The function has no inflection points.
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Factor out
Now to find the possible points of inflection,
Equating
This polynomial does not appear to be factorable so solve for
Therefore, there are no real solutions so there are no values of
Hence,
Since
Therefore, the function has no inflection points.
Chapter 5 Solutions
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Additional Math Textbook Solutions
Algebra and Trigonometry (6th Edition)
Elementary Statistics: Picturing the World (7th Edition)
College Algebra (7th Edition)
Introductory Statistics
Calculus: Early Transcendentals (2nd Edition)
- For each of the following series, determine whether the absolute convergence series test determines absolute convergence or fails. For the ¿th series, if the test is inconclusive then let Mi = 4, while if the test determines absolute convergence let Mi 1 : 2: ∞ Σ(−1)"+¹ sin(2n); n=1 Σ n=1 Σ ((−1)”. COS n² 3+2n4 3: (+ 4: 5 : n=1 ∞ n 2+5n3 ПП n² 2 5+2n3 пп n² Σ(+)+ n=1 ∞ n=1 COS 4 2 3+8n3 П ηπ n- (−1)+1 sin (+727) 5 + 2m³ 4 = 8. Then the value of cos(M₁) + cos(2M2) + cos(3M3) + sin(2M) + sin(M5) is -0.027 -0.621 -1.794 -1.132 -1.498 -4.355 -2.000 2.716arrow_forwardi need help with this question i tried by myself and so i am uploadding the question to be quided with step by step solution and please do not use chat gpt i am trying to learn thank you.arrow_forwardi need help with this question i tried by myself and so i am uploadding the question to be quided with step by step solution and please do not use chat gpt i am trying to learn thank you.arrow_forward
- 1. 3 2 fx=14x²-15x²-9x- 2arrow_forwardNo it is not a graded assignment, its a review question but i only have the final answer not the working or explanationarrow_forwardClass, the class silues, and the class notes, whether the series does alternate and the absolute values of the terms decrease), and if the test does apply, determine whether the series converges or diverges. For the ith series, if the test does not apply the let Mi = 2, while if the test determines divergence then M¿ = 4, and if it determines convergence then M¿ = 8. 1: 2: 3 : 4: 5 : ∞ n=1 ∞ (−1)n+1. Σ(-1) +1 n=1 ∞ п 3m² +2 Σ(-1)+1 sin(2n). n=1 ∞ 2n² + 2n +3 4n2 +6 1 e-n + n² 3n23n+1 9n² +3 In(n + 1) 2n+1 Σ(-1) +1 n=1 ∞ Σ(-1)". n=1 Then the value of cos(M₁) + cos(2M2) + cos(3M3) + sin(2M4) + sin(M5) is 1.715 0.902 0.930 -1.647 -0.057 ● 2.013 1.141 4.274arrow_forward
- 3. FCX14) = x²+3xx-y3 +.arrow_forwardA cylindrical chemical storage tank with a capacity of 950m3 is going to be constructed in a warehouse that is 11m by 14m with a height of 10m. The specifications call for the case to be made of sheet metal that costs $90/m2, the top to be made from sheet metal that costs $45/m2 and the wall to be made of sheet metal that costs $80/m2. If you want to minimize the cost to make the storage house, how much would you end up spending to build the tank?arrow_forwardCalculate the max value of the directional derivatearrow_forward
- Calculus III May I please have the example, definition semicolons, and all blanks completed and solved? Thank you so much,arrow_forwardA company estimates that the revenue (in dollars) from the sale of x doghouses is given by R(x) = 12,000 In (0.02x+1). Use the differential to approximate the change in revenue from the sale of one more doghouse if 80 doghouses have already been sold. The revenue will increase by $ if one more doghouse is made. (Round to the nearest cent as needed.)arrow_forwardThe population of bacteria (in millions) in a certain culture x hours after an experimental 20x nutrient is introduced into the culture is P(x) = - 2 Use the differential to approximate the changes in population for the following changes in x. 8+x a. 1 to 1.5 b. 3 to 3.25 a. Use the differential to approximate the change in population for x=1 to 1.5. Between 1 and 1.5 hours, the population of bacteria changes by million. (Round to three decimal places as needed.)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





