Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
4th Edition
ISBN: 9780133178579
Author: Ross L. Finney
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 3RE

a.

To determine

Tofindthe interval on which the function y=x2e1x2 is increasing.

a.

Expert Solution
Check Mark

Answer to Problem 3RE

The function is then increasing for [1,0) and [1,) .

Explanation of Solution

Given information:

The given function is y=x2e1x2 .

Formula:

Chain rule:

  ddx(uv)=uv+uv

Consider the function y=x2e1x2 ,

  y=x2e1x2=x2ex2

Using product and chain rule: ddx(uv)=uv+uv find the derivative,

Here u=x2u=2x and v=ex2v=ex2(2x3) ,

  y=2xex2+x2ex2(2x3)y=2xex22xex2

Now setting the derivative equal to zero to find the critical values,

  2xex22xex2=02ex2(x1x)=0

  2ex2=0 or (x1x)=0

  2ex20 , for all values of x . Hence there are no critical values for this factor.

  (x1x)=0x21=0x2=1x=±1

Therefore, the critical values are x=1,x=1,x=0 .

From the critical values the possible intervals are (,1],[1,0),(0,1] or [1,) . Here x=0 is not in the domain of y henceforth it is not included.

Now to determine which of the intervals is increasing,

Consider x=2 for (,1] :

  y(2)=2e(2)2(212)2.568<0

Consider x=0.5 for [1,0) :

  y(0.5)=2e(0.5)2(0.510.5)382.187>0

Consider x=0.5 for (0,1] :

  y(0.5)=2e(0.5)2(0.510.5)382.187<0

Consider x=2 for [1,) :

  y(2)=2e(2)2(212)2.568>0

Therefore, the function is increasing for [1,0) and [1,) .

b.

To determine

To find the interval on which the function y=x2e1x2 is decreasing.

b.

Expert Solution
Check Mark

Answer to Problem 3RE

The function is decreasing for (,1] and (0,1] .

Explanation of Solution

Given information:

The given function is y=x2e1x2 .

Formula:

Chain rule:

  ddx(uv)=uv+uv

Consider the function y=x2e1x2 ,

  y=x2e1x2=x2ex2

Using product and chain rule: ddx(uv)=uv+uv find the derivative,

Here u=x2u=2x and v=ex2v=ex2(2x3) ,

  y=2xex2+x2ex2(2x3)y=2xex22xex2

Now setting the derivative equal to zero to find the critical values,

  2xex22xex2=02ex2(x1x)=0

  2ex2=0 or (x1x)=0

  2ex20 , for all values of x . Hence there are no critical values for this factor.

  (x1x)=0x21=0x2=1x=±1

Therefore, the critical values are x=1,x=1,x=0 .

From the critical values the possible intervals are (,1],[1,0),(0,1] or [1,) . Here x=0 is not in the domain of y henceforth it is not included.

Now to determine which of the intervals is decreasing,

Consider x=2 for (,1] :

  y(2)=2e(2)2(212)2.568<0

Consider x=0.5 for [1,0) :

  y(0.5)=2e(0.5)2(0.510.5)382.187>0

Consider x=0.5 for (0,1] :

  y(0.5)=2e(0.5)2(0.510.5)382.187<0

Consider x=2 for [1,) :

  y(2)=2e(2)2(212)2.568>0

Therefore, the function is decreasing for (,1] and (0,1] .

c.

To determine

To find the interval on which the function y=x2e1x2 is concave up.

c.

Expert Solution
Check Mark

Answer to Problem 3RE

The function is concave up for (,0)(0,) .

Explanation of Solution

Given information:

The given function is y=x2e1x2 .

Formula:

Chain rule:

  ddx(uv)=uv+uv

Consider the function y=x2e1x2 ,

  y=x2e1x2=x2ex2

Using product and chain rule: ddx(uv)=uv+uv find the derivative,

Here u=x2u=2x and v=ex2v=ex2(2x3) ,

  y=2xex2+x2ex2(2x3)y=2xex22xex2

Factor out 2ex2 to find second derivative,

  y=2ex2(2x3)(xx1)+2ex2(1+x2)y=2ex2(2x3(xx1)+1+x2)y=2ex2(2x2+2x4+1+x2)y=2ex2(2x4+1x2)y=2ex2(2x4+11x2)y=2ex2(x4x2+2x4)

Now to find the possible points of inflection,

  2ex20 , for all values of x and is undefined when x=0 .

Equating y=0 to find the value of x ,

  x4x2+2x4=0x4x2+2=0

This polynomial does not appear to be factorable so solve for x by completing the square.

  x4x2=2x4x2+14=2+14(x212)2=74x212=±74

Therefore, this has no real solution so there are no values of x that makes y=0 .

Hence, x=0 is the only value found in the previous step so substitute a value less than 0 and a value greater than 0 into y .

  y(1)=2e(1)2((1)4(1)2+2(1)4)10.873>0y(1)=2e(1)2((1)4(1)2+2(1)4)10.873>0

Since y>0 for x<0 and x>0 ,the function is concave up for (,0)(0,)

Therefore, the function is concave up for (,0)(0,) .

d.

To determine

To find the interval on which the function y=x2e1x2 is concave down.

d.

Expert Solution
Check Mark

Answer to Problem 3RE

The function is concave down for no values of x .

Explanation of Solution

Given information:

The given function is y=x2e1x2 .

Formula:

Chain rule:

  ddx(uv)=uv+uv

Consider the function y=x2e1x2 ,

  y=x2e1x2=x2ex2

Using product and chain rule: ddx(uv)=uv+uv find the derivative,

Here u=x2u=2x and v=ex2v=ex2(2x3) ,

  y=2xex2+x2ex2(2x3)y=2xex22xex2

Factor out 2ex2 to find second derivative,

  y=2ex2(2x3)(xx1)+2ex2(1+x2)y=2ex2(2x3(xx1)+1+x2)y=2ex2(2x2+2x4+1+x2)y=2ex2(2x4+1x2)y=2ex2(2x4+11x2)y=2ex2(x4x2+2x4)

Now to find the possible points of inflection,

  2ex20 , for all values of x and is undefined when x=0 .

Equating y=0 to find the value of x ,

  x4x2+2x4=0x4x2+2=0

This polynomial does not appear to be factorable so solve for x by completing the square.

  x4x2=2x4x2+14=2+14(x212)2=74x212=±74

Therefore, this has no real solution so there are no values of x that makes y=0 .

Hence, x=0 is the only value found in the previous step so substitute a value less than 0 and a value greater than 0 into y .

  y(1)=2e(1)2((1)4(1)2+2(1)4)10.873>0y(1)=2e(1)2((1)4(1)2+2(1)4)10.873>0

Since y>0 for x<0 and x>0 ,the function is concave up for (,0)(0,) so there are no values of x .

Therefore, the function is concave down for no values of x .

e.

To determine

To find the interval on which the function y=x2e1x2 has local extreme values.

e.

Expert Solution
Check Mark

Answer to Problem 3RE

The function haslocal extreme values are at (1,e) and (1,e) .

Explanation of Solution

Given information:

The given function is y=x2e1x2 .

Formula:

Chain rule:

  ddx(uv)=uv+uv

Consider the function y=x2e1x2 ,

  y=x2e1x2=x2ex2

Using product and chain rule: ddx(uv)=uv+uv find the derivative,

Here u=x2u=2x and v=ex2v=ex2(2x3) ,

  y=2xex2+x2ex2(2x3)y=2xex22xex2

Here the derivative is undefined if x=0 since it will cause division by 0 .

Now setting the derivative equal to zero to find the critical values,

  2xe1x22e1x2x=02e1x2(x1x)=0

  2ex2=0 or (x1x)=0

  2ex20 , for all values of x . Hence there are no critical values for this factor.

  (x1x)=0x21=0x2=1x=±1

The critical values include all the values that makes y=0 or undefined so the critical values are then ±1 and 0 .

Then the possible intervals are given by (,1],[1,0),(0,1] or [1,) .

Now to determine whether the function is increasing or decreasing on these intervals by substituting a value for x ,

Consider x=2 for (,1] :

  y(2)=2e1(2)2(212)3.85<0

Consider x=0.5 for [1,0) :

  y(0.5)=2e1(0.5)2(0.510.5)163.8>0

Consider x=0.5 for (0,1] :

  y(0.5)=2e1(0.5)2(0.510.5)163.8<0

Consider x=2 for [1,) :

  y(2)=2e1(2)2(212)3.85>0

Therefore, y has local extreme at all values of x in the domain where y switches its signs.

Since y switches its value from negative to positive at x=1 and x=1 , these will be local minimums.

  y(1)=(1)2e1(12)=ey(1)=(1)2e1(12)=e

The local extreme are then local minimums at (1,e) and (1,e) .

Therefore, the function has local extreme values are at (1,e) and (1,e) .

f.

To determine

To find the interval on which the function y=x2e1x2 has inflection points.

f.

Expert Solution
Check Mark

Answer to Problem 3RE

The function has no inflection points.

Explanation of Solution

Given information:

The given function is y=x2e1x2 .

Formula:

Chain rule:

  ddx(uv)=uv+uv

Consider the function y=x2e1x2 ,

  y=x2e1x2=x2ex2

Using product and chain rule: ddx(uv)=uv+uv find the derivative,

Here u=x2u=2x and v=ex2v=ex2(2x3) ,

  y=2xex2+x2ex2(2x3)y=2xex22xex2

Factor out 2ex2 to find second derivative,

  y=2ex2(2x3)(xx1)+2ex2(1+x2)y=2ex2(2x3(xx1)+1+x2)y=2ex2(2x2+2x4+1+x2)y=2ex2(2x4+1x2)y=2ex2(11x2+2x4)y=2ex2(x4x2+2x4)

Now to find the possible points of inflection,

  2ex20 , for all values of x and is undefined when x=0 .

Equating y=0 to find the value of x ,

  x4x2+2x4=0x4x2+2=0

This polynomial does not appear to be factorable so solve for x by completing the square.

  x4x2=2x4x2+14=2+14(x212)2=74x212=±74

Therefore, there are no real solutions so there are no values of x that make y=0 .

Hence, x=0 is the only value found in the previous step so substitute a value less than 0 and a value greater than 0 into y .

  y(1)=2e(1)2((1)4(1)2+2(1)4)10.873>0y(1)=2e(1)2((1)4(1)2+2(1)4)10.873>0

Since y>0 for x<0 and x>0 ,the function is concave up for (,0)(0,) so there are no points of inflection since the concavity doesn’t change signs.

Therefore, the function has no inflection points.

Chapter 5 Solutions

Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)

Ch. 5.1 - Prob. 11QRCh. 5.1 - Prob. 12QRCh. 5.1 - Prob. 1ECh. 5.1 - Prob. 2ECh. 5.1 - Prob. 3ECh. 5.1 - Prob. 4ECh. 5.1 - Prob. 5ECh. 5.1 - Prob. 6ECh. 5.1 - Prob. 7ECh. 5.1 - Prob. 8ECh. 5.1 - Prob. 9ECh. 5.1 - Prob. 10ECh. 5.1 - Prob. 11ECh. 5.1 - Prob. 12ECh. 5.1 - Prob. 13ECh. 5.1 - Prob. 14ECh. 5.1 - Prob. 15ECh. 5.1 - Prob. 16ECh. 5.1 - Prob. 17ECh. 5.1 - Prob. 18ECh. 5.1 - Prob. 19ECh. 5.1 - Prob. 20ECh. 5.1 - Prob. 21ECh. 5.1 - Prob. 22ECh. 5.1 - Prob. 23ECh. 5.1 - Prob. 24ECh. 5.1 - Prob. 25ECh. 5.1 - Prob. 26ECh. 5.1 - Prob. 27ECh. 5.1 - Prob. 28ECh. 5.1 - Prob. 29ECh. 5.1 - Prob. 30ECh. 5.1 - Prob. 31ECh. 5.1 - Prob. 32ECh. 5.1 - Prob. 33ECh. 5.1 - Prob. 34ECh. 5.1 - Prob. 35ECh. 5.1 - Prob. 36ECh. 5.1 - Prob. 37ECh. 5.1 - Prob. 38ECh. 5.1 - Prob. 39ECh. 5.1 - Prob. 40ECh. 5.1 - Prob. 41ECh. 5.1 - Prob. 42ECh. 5.1 - Prob. 43ECh. 5.1 - Prob. 44ECh. 5.1 - Prob. 45ECh. 5.1 - Prob. 46ECh. 5.1 - Prob. 47ECh. 5.1 - Prob. 48ECh. 5.1 - Prob. 49ECh. 5.1 - Prob. 50ECh. 5.1 - Prob. 51ECh. 5.1 - Prob. 52ECh. 5.1 - Prob. 53ECh. 5.1 - Prob. 54ECh. 5.1 - Prob. 55ECh. 5.2 - Prob. 1QRCh. 5.2 - Prob. 2QRCh. 5.2 - Prob. 3QRCh. 5.2 - Prob. 4QRCh. 5.2 - Prob. 5QRCh. 5.2 - Prob. 6QRCh. 5.2 - Prob. 7QRCh. 5.2 - Prob. 8QRCh. 5.2 - Prob. 9QRCh. 5.2 - Prob. 10QRCh. 5.2 - Prob. 1ECh. 5.2 - Prob. 2ECh. 5.2 - Prob. 3ECh. 5.2 - Prob. 4ECh. 5.2 - Prob. 5ECh. 5.2 - Prob. 6ECh. 5.2 - Prob. 7ECh. 5.2 - Prob. 8ECh. 5.2 - Prob. 9ECh. 5.2 - Prob. 10ECh. 5.2 - Prob. 11ECh. 5.2 - Prob. 12ECh. 5.2 - Prob. 13ECh. 5.2 - Prob. 14ECh. 5.2 - Prob. 15ECh. 5.2 - Prob. 16ECh. 5.2 - Prob. 17ECh. 5.2 - Prob. 18ECh. 5.2 - Prob. 19ECh. 5.2 - Prob. 20ECh. 5.2 - Prob. 21ECh. 5.2 - Prob. 22ECh. 5.2 - Prob. 23ECh. 5.2 - Prob. 24ECh. 5.2 - Prob. 25ECh. 5.2 - Prob. 26ECh. 5.2 - Prob. 27ECh. 5.2 - Prob. 28ECh. 5.2 - Prob. 29ECh. 5.2 - Prob. 30ECh. 5.2 - Prob. 31ECh. 5.2 - Prob. 32ECh. 5.2 - Prob. 33ECh. 5.2 - Prob. 34ECh. 5.2 - Prob. 35ECh. 5.2 - Prob. 36ECh. 5.2 - Prob. 37ECh. 5.2 - Prob. 38ECh. 5.2 - Prob. 39ECh. 5.2 - Prob. 40ECh. 5.2 - Prob. 41ECh. 5.2 - Prob. 42ECh. 5.2 - Prob. 43ECh. 5.2 - Prob. 44ECh. 5.2 - Prob. 45ECh. 5.2 - Prob. 46ECh. 5.2 - Prob. 47ECh. 5.2 - Prob. 48ECh. 5.2 - Prob. 49ECh. 5.2 - Prob. 50ECh. 5.2 - Prob. 51ECh. 5.2 - Prob. 52ECh. 5.2 - Prob. 53ECh. 5.2 - Prob. 54ECh. 5.2 - Prob. 55ECh. 5.2 - Prob. 56ECh. 5.2 - Prob. 57ECh. 5.2 - Prob. 58ECh. 5.2 - Prob. 59ECh. 5.2 - Prob. 60ECh. 5.2 - Prob. 61ECh. 5.2 - Prob. 62ECh. 5.2 - Prob. 63ECh. 5.3 - Prob. 1QRCh. 5.3 - Prob. 2QRCh. 5.3 - Prob. 3QRCh. 5.3 - Prob. 4QRCh. 5.3 - Prob. 5QRCh. 5.3 - Prob. 6QRCh. 5.3 - Prob. 7QRCh. 5.3 - Prob. 8QRCh. 5.3 - Prob. 9QRCh. 5.3 - Prob. 10QRCh. 5.3 - Prob. 1ECh. 5.3 - Prob. 2ECh. 5.3 - Prob. 3ECh. 5.3 - Prob. 4ECh. 5.3 - Prob. 5ECh. 5.3 - Prob. 6ECh. 5.3 - Prob. 7ECh. 5.3 - Prob. 8ECh. 5.3 - Prob. 9ECh. 5.3 - Prob. 10ECh. 5.3 - Prob. 11ECh. 5.3 - Prob. 12ECh. 5.3 - Prob. 13ECh. 5.3 - Prob. 14ECh. 5.3 - Prob. 15ECh. 5.3 - Prob. 16ECh. 5.3 - Prob. 17ECh. 5.3 - Prob. 18ECh. 5.3 - Prob. 19ECh. 5.3 - Prob. 20ECh. 5.3 - Prob. 21ECh. 5.3 - Prob. 22ECh. 5.3 - Prob. 23ECh. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - Prob. 28ECh. 5.3 - Prob. 29ECh. 5.3 - Prob. 30ECh. 5.3 - Prob. 31ECh. 5.3 - Prob. 32ECh. 5.3 - Prob. 33ECh. 5.3 - Prob. 34ECh. 5.3 - Prob. 35ECh. 5.3 - Prob. 36ECh. 5.3 - Prob. 37ECh. 5.3 - Prob. 38ECh. 5.3 - Prob. 39ECh. 5.3 - Prob. 40ECh. 5.3 - Prob. 41ECh. 5.3 - Prob. 42ECh. 5.3 - Prob. 43ECh. 5.3 - Prob. 44ECh. 5.3 - Prob. 45ECh. 5.3 - Prob. 46ECh. 5.3 - Prob. 47ECh. 5.3 - Prob. 48ECh. 5.3 - Prob. 49ECh. 5.3 - Prob. 50ECh. 5.3 - Prob. 51ECh. 5.3 - Prob. 52ECh. 5.3 - Prob. 53ECh. 5.3 - Prob. 54ECh. 5.3 - Prob. 55ECh. 5.3 - Prob. 56ECh. 5.3 - Prob. 57ECh. 5.3 - Prob. 58ECh. 5.3 - Prob. 59ECh. 5.3 - Prob. 60ECh. 5.3 - Prob. 61ECh. 5.3 - Prob. 62ECh. 5.3 - Prob. 63ECh. 5.3 - Prob. 1QQCh. 5.3 - Prob. 2QQCh. 5.3 - Prob. 3QQCh. 5.3 - Prob. 4QQCh. 5.4 - Prob. 1QRCh. 5.4 - Prob. 2QRCh. 5.4 - Prob. 3QRCh. 5.4 - Prob. 4QRCh. 5.4 - Prob. 5QRCh. 5.4 - Prob. 6QRCh. 5.4 - Prob. 7QRCh. 5.4 - Prob. 8QRCh. 5.4 - Prob. 9QRCh. 5.4 - Prob. 10QRCh. 5.4 - Prob. 1ECh. 5.4 - Prob. 2ECh. 5.4 - Prob. 3ECh. 5.4 - Prob. 4ECh. 5.4 - Prob. 5ECh. 5.4 - Prob. 6ECh. 5.4 - Prob. 7ECh. 5.4 - Prob. 8ECh. 5.4 - Prob. 9ECh. 5.4 - Prob. 10ECh. 5.4 - Prob. 11ECh. 5.4 - Prob. 12ECh. 5.4 - Prob. 13ECh. 5.4 - Prob. 14ECh. 5.4 - Prob. 15ECh. 5.4 - Prob. 16ECh. 5.4 - Prob. 17ECh. 5.4 - Prob. 18ECh. 5.4 - Prob. 19ECh. 5.4 - Prob. 20ECh. 5.4 - Prob. 21ECh. 5.4 - Prob. 22ECh. 5.4 - Prob. 23ECh. 5.4 - Prob. 24ECh. 5.4 - Prob. 25ECh. 5.4 - Prob. 26ECh. 5.4 - Prob. 27ECh. 5.4 - Prob. 28ECh. 5.4 - Prob. 29ECh. 5.4 - Prob. 30ECh. 5.4 - Prob. 31ECh. 5.4 - Prob. 32ECh. 5.4 - Prob. 33ECh. 5.4 - Prob. 34ECh. 5.4 - Prob. 35ECh. 5.4 - Prob. 36ECh. 5.4 - Prob. 37ECh. 5.4 - Prob. 38ECh. 5.4 - Prob. 39ECh. 5.4 - Prob. 40ECh. 5.4 - Prob. 41ECh. 5.4 - Prob. 42ECh. 5.4 - Prob. 43ECh. 5.4 - Prob. 44ECh. 5.4 - Prob. 45ECh. 5.4 - Prob. 46ECh. 5.4 - Prob. 47ECh. 5.4 - Prob. 48ECh. 5.4 - Prob. 49ECh. 5.4 - Prob. 50ECh. 5.4 - Prob. 51ECh. 5.4 - Prob. 52ECh. 5.4 - Prob. 53ECh. 5.4 - Prob. 54ECh. 5.4 - Prob. 55ECh. 5.4 - Prob. 56ECh. 5.4 - Prob. 57ECh. 5.4 - Prob. 58ECh. 5.4 - Prob. 59ECh. 5.4 - Prob. 60ECh. 5.4 - Prob. 61ECh. 5.4 - Prob. 62ECh. 5.4 - Prob. 63ECh. 5.4 - Prob. 64ECh. 5.4 - Prob. 65ECh. 5.5 - Prob. 1QRCh. 5.5 - Prob. 2QRCh. 5.5 - Prob. 3QRCh. 5.5 - Prob. 4QRCh. 5.5 - Prob. 5QRCh. 5.5 - Prob. 6QRCh. 5.5 - Prob. 7QRCh. 5.5 - Prob. 8QRCh. 5.5 - Prob. 9QRCh. 5.5 - Prob. 10QRCh. 5.5 - Prob. 1ECh. 5.5 - Prob. 2ECh. 5.5 - Prob. 3ECh. 5.5 - Prob. 4ECh. 5.5 - Prob. 5ECh. 5.5 - Prob. 6ECh. 5.5 - Prob. 7ECh. 5.5 - Prob. 8ECh. 5.5 - Prob. 9ECh. 5.5 - Prob. 10ECh. 5.5 - Prob. 11ECh. 5.5 - Prob. 12ECh. 5.5 - Prob. 13ECh. 5.5 - Prob. 14ECh. 5.5 - Prob. 15ECh. 5.5 - Prob. 16ECh. 5.5 - Prob. 17ECh. 5.5 - Prob. 18ECh. 5.5 - Prob. 19ECh. 5.5 - Prob. 20ECh. 5.5 - Prob. 21ECh. 5.5 - Prob. 22ECh. 5.5 - Prob. 23ECh. 5.5 - Prob. 24ECh. 5.5 - Prob. 25ECh. 5.5 - Prob. 26ECh. 5.5 - Prob. 27ECh. 5.5 - Prob. 28ECh. 5.5 - Prob. 29ECh. 5.5 - Prob. 30ECh. 5.5 - Prob. 31ECh. 5.5 - Prob. 32ECh. 5.5 - Prob. 33ECh. 5.5 - Prob. 34ECh. 5.5 - Prob. 35ECh. 5.5 - Prob. 36ECh. 5.5 - Prob. 37ECh. 5.5 - Prob. 38ECh. 5.5 - Prob. 39ECh. 5.5 - Prob. 40ECh. 5.5 - Prob. 41ECh. 5.5 - Prob. 42ECh. 5.5 - Prob. 43ECh. 5.5 - Prob. 44ECh. 5.5 - Prob. 45ECh. 5.5 - Prob. 46ECh. 5.5 - Prob. 47ECh. 5.5 - Prob. 48ECh. 5.5 - Prob. 49ECh. 5.5 - Prob. 50ECh. 5.5 - Prob. 51ECh. 5.5 - Prob. 52ECh. 5.5 - Prob. 53ECh. 5.5 - Prob. 54ECh. 5.5 - Prob. 55ECh. 5.5 - Prob. 56ECh. 5.5 - Prob. 57ECh. 5.5 - Prob. 58ECh. 5.5 - Prob. 59ECh. 5.5 - Prob. 60ECh. 5.5 - Prob. 61ECh. 5.5 - Prob. 62ECh. 5.5 - Prob. 63ECh. 5.5 - Prob. 64ECh. 5.5 - Prob. 65ECh. 5.5 - Prob. 66ECh. 5.5 - Prob. 67ECh. 5.5 - Prob. 68ECh. 5.5 - Prob. 69ECh. 5.5 - Prob. 70ECh. 5.5 - Prob. 71ECh. 5.5 - Prob. 72ECh. 5.6 - Prob. 1QRCh. 5.6 - Prob. 2QRCh. 5.6 - Prob. 3QRCh. 5.6 - Prob. 4QRCh. 5.6 - Prob. 5QRCh. 5.6 - Prob. 6QRCh. 5.6 - Prob. 7QRCh. 5.6 - Prob. 8QRCh. 5.6 - Prob. 9QRCh. 5.6 - Prob. 10QRCh. 5.6 - Prob. 1ECh. 5.6 - Prob. 2ECh. 5.6 - Prob. 3ECh. 5.6 - Prob. 4ECh. 5.6 - Prob. 5ECh. 5.6 - Prob. 6ECh. 5.6 - Prob. 7ECh. 5.6 - Prob. 8ECh. 5.6 - Prob. 9ECh. 5.6 - Prob. 10ECh. 5.6 - Prob. 11ECh. 5.6 - Prob. 12ECh. 5.6 - Prob. 13ECh. 5.6 - Prob. 14ECh. 5.6 - Prob. 15ECh. 5.6 - Prob. 16ECh. 5.6 - Prob. 17ECh. 5.6 - Prob. 18ECh. 5.6 - Prob. 19ECh. 5.6 - Prob. 20ECh. 5.6 - Prob. 21ECh. 5.6 - Prob. 22ECh. 5.6 - Prob. 23ECh. 5.6 - Prob. 24ECh. 5.6 - Prob. 25ECh. 5.6 - Prob. 26ECh. 5.6 - Prob. 27ECh. 5.6 - Prob. 28ECh. 5.6 - Prob. 29ECh. 5.6 - Prob. 30ECh. 5.6 - Prob. 31ECh. 5.6 - Prob. 32ECh. 5.6 - Prob. 33ECh. 5.6 - Prob. 34ECh. 5.6 - Prob. 35ECh. 5.6 - Prob. 36ECh. 5.6 - Prob. 37ECh. 5.6 - Prob. 38ECh. 5.6 - Prob. 39ECh. 5.6 - Prob. 40ECh. 5.6 - Prob. 41ECh. 5.6 - Prob. 42ECh. 5.6 - Prob. 43ECh. 5.6 - Prob. 44ECh. 5.6 - Prob. 45ECh. 5.6 - Prob. 46ECh. 5.6 - Prob. 47ECh. 5.6 - Prob. 1QQCh. 5.6 - Prob. 2QQCh. 5.6 - Prob. 3QQCh. 5.6 - Prob. 4QQCh. 5 - Prob. 1RECh. 5 - Prob. 2RECh. 5 - Prob. 3RECh. 5 - Prob. 4RECh. 5 - Prob. 5RECh. 5 - Prob. 6RECh. 5 - Prob. 7RECh. 5 - Prob. 8RECh. 5 - Prob. 9RECh. 5 - Prob. 10RECh. 5 - Prob. 11RECh. 5 - Prob. 12RECh. 5 - Prob. 13RECh. 5 - Prob. 14RECh. 5 - Prob. 15RECh. 5 - Prob. 16RECh. 5 - Prob. 17RECh. 5 - Prob. 18RECh. 5 - Prob. 19RECh. 5 - Prob. 20RECh. 5 - Prob. 21RECh. 5 - Prob. 22RECh. 5 - Prob. 23RECh. 5 - Prob. 24RECh. 5 - Prob. 25RECh. 5 - Prob. 26RECh. 5 - Prob. 27RECh. 5 - Prob. 28RECh. 5 - Prob. 29RECh. 5 - Prob. 30RECh. 5 - Prob. 31RECh. 5 - Prob. 32RECh. 5 - Prob. 33RECh. 5 - Prob. 34RECh. 5 - Prob. 35RECh. 5 - Prob. 36RECh. 5 - Prob. 37RECh. 5 - Prob. 38RECh. 5 - Prob. 39RECh. 5 - Prob. 40RECh. 5 - Prob. 41RECh. 5 - Prob. 42RECh. 5 - Prob. 43RECh. 5 - Prob. 44RECh. 5 - Prob. 45RECh. 5 - Prob. 46RECh. 5 - Prob. 47RECh. 5 - Prob. 48RECh. 5 - Prob. 49RECh. 5 - Prob. 50RECh. 5 - Prob. 51RECh. 5 - Prob. 52RECh. 5 - Prob. 53RECh. 5 - Prob. 54RECh. 5 - Prob. 55RECh. 5 - Prob. 56RECh. 5 - Prob. 57RECh. 5 - Prob. 58RECh. 5 - Prob. 59RECh. 5 - Prob. 60RECh. 5 - Prob. 61RECh. 5 - Prob. 62RECh. 5 - Prob. 63RECh. 5 - Prob. 64RECh. 5 - Prob. 65RECh. 5 - Prob. 66RECh. 5 - Prob. 67RECh. 5 - Prob. 68RECh. 5 - Prob. 69RECh. 5 - Prob. 70RECh. 5 - Prob. 71RECh. 5 - Prob. 72RE
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY