
Concept explainers
Interpretation:
In a nonpolar covalent bond, the degree of inequality in sharing of electrons has to be chosen from the given options.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
Bond polarity is the degree of inequality in the electron pair sharing between two atoms in a
The ionic and covalent bonds can be identified by using the electronegativity difference between the atoms that are bonded together.
- Bonds that are formed between two similar electronegative atoms are known as nonpolar covalent bonds. The electronegativity difference has to be 0.4 or less.
- The bonds that have electronegativity difference greater than 0.4 and lesser than 1.5 are known as polar covalent bonds.
- If the electronegativity difference is more than 2.0, then the bond is considered to be ionic.
- If the electronegativity difference is between 1.5 to 2.0, then the bond can be ionic or covalent depending upon the type of atoms that is bonded. If the bond is between a metal and nonmetal, then it is ionic and if it is between two nonmetals then it is polar covalent.

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
General, Organic, and Biological Chemistry
- Q10: (a) Propose a synthesis of C from A. (b) Propose a synthesis of C from B. Br Br ...\SCH 3 A B Carrow_forward9: Complete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forwardComplete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forward
- QUESTION 3: Provide the synthetic steps that convert the starting material into the product (no mechanism required). HO OH NH CH3 multiple steps 요요 H3Carrow_forwardQ6: Predict the effect of the changes given on the rate of the reaction below. CH3OH CH3Cl + NaOCH3 → CH3OCH3 + NaCl a) Change the substrate from CH3CI to CH31: b) Change the nucleophile from NaOCH 3 to NaSCH3: c) Change the substrate from CH3CI to (CH3)2CHCI: d) Change the solvent from CH3OH to DMSO.arrow_forwardQ3: Arrange each group of compounds from fastest SN2 reaction rate to slowest SN2 reaction rate. a) CI Cl فيكم H3C-Cl A B C D Br Br b) A B C Br H3C-Br Darrow_forward
- Q2: Group these solvents into either protic solvents or aprotic solvents. Acetonitrile (CH3CN), H₂O, Acetic acid (CH3COOH), Acetone (CH3COCH3), CH3CH2OH, DMSO (CH3SOCH3), DMF (HCON(CH3)2), CH3OHarrow_forwardSuppose the rate of evaporation in a hot, dry region is 1.76 meters per year, and the seawater there has a salinity of 35 ‰. Assuming a 93% yield, how much salt (NaCl) can be harvested each year from 1 km2 of solar evaporation ponds that use this seawater as a source?arrow_forwardhelparrow_forward
- Explain why only the lone pairs on the central atom are taken into consideration when predicting molecular shapearrow_forward(ME EX1) Prblm #9/10 Can you explain in detail (step by step) I'm so confused with these problems. For turmber 13 can u turn them into lewis dot structures so I can better understand because, and then as well explain the resonance structure part. Thanks for the help.arrow_forwardProblems 19 and 20: (ME EX1) Can you please explain the following in detail? I'm having trouble understanding them. Both problems are difficult for me to explain in detail, so please include the drawings and answers.arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,

