Concept explainers
(a)
Interpretation:
Whether element 1 has higher electronegative value than that of element 2 should be indicated.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
(b)
Interpretation:
Whether element 4 has higher electronegative value than that of element 5 should be indicated.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
(c)
Interpretation:
Whether element 3 has higher electronegative value than that of element 8 should be indicated.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
(d)
Interpretation:
Whether element 7 has higher electronegative value than that of element 6 should be indicated.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
General, Organic, and Biological Chemistry
- A solution contains 10-3 M (NH4)2CO3 plus 10-3 M CaCO3. (NH4+: pKa 9.26) a) Follow the four steps and list the species and equations that would have to be solved to determine the equilibrium solution composition. (15 pts) b) Prepare a log C-pH diagram for the solution. Use a full sheet of graph paper, and show the ranges 1≤ pH < 13 and -10≤ log C≤ -1. (10 pts) c) Use the graphical approach for the solution pH. What is the concentration of all species? (15 pts)arrow_forwardKeggin structure.arrow_forwardGiven: N2(g) + 3H2(g)2NH3(g) AG° = 53.8 kJ at 700K. Calculate AG for the above reaction at 700K if the reaction mixture consists of 20.0 atm of N2(g), 30.0 atm of H2(g), and 0.500 atm of NH3(g). A) -26.9 kJ B) 31.1 kJ C) -15.6 kJ D) 26.9 kJ E) -25.5 kJarrow_forward
- At pil below about 35 woon (Fe) oxidizes in streams according to the following Water in a reservoir at 20°C has a pH of 7.7 and contains the following constituents: Constituent (g) + Conc. (mg/L) Ca2+ 38 HCO3 abiotic oxid 183 HO Ferrous iron under these conditions and at 20°Cis Estimate the activities of Ca2+ and HCO3-, using an appropriate equation to compute the activity coefficients. (atomic weight: Ca 40)arrow_forwarddraw the diagram pleasearrow_forwardShow work with explanation. Don't give Ai generated solutionarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning