Concept explainers
(a)
Interpretation:
The bond formed between nitrogen and hydrogen has to be classified as nonpolar covalent, polar covalent or ionic.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
Bond polarity is the degree of inequality in the electron pair sharing between two atoms in a
The ionic and covalent bonds can be identified by using the electronegativity difference between the atoms that are bonded together.
- Bonds that are formed between two similar electronegative atoms are known as nonpolar covalent bonds. The electronegativity difference has to be 0.4 or less.
- The bonds that have electronegativity difference greater than 0.4 and lesser than 1.5 are known as polar covalent bonds.
- If the electronegativity difference is more than 2.0, then the bond is considered to be ionic.
- If the electronegativity difference is between 1.5 to 2.0, then the bond can be ionic or covalent depending upon the type of atoms that is bonded. If the bond is between a metal and nonmetal, then it is ionic and if it is between two nonmetals then it is polar covalent.
(b)
Interpretation:
The bond formed between nitrogen and carbon has to be classified as nonpolar covalent, polar covalent or ionic.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
Bond polarity is the degree of inequality in the electron pair sharing between two atoms in a chemical bond. If the electrons are equally shared between two atoms then it is known as nonpolar covalent bond. If the electrons are unequally shared between two atoms means then it is known as polar covalent bond. The more electronegative atom pulls the shared pair of electrons towards itself resulting in fractional negative charge over it while the other atom gets a fractional positive charge. The fractional negative charge is depicted by using the symbol
The ionic and covalent bonds can be identified by using the electronegativity difference between the atoms that are bonded together.
- Bonds that are formed between two similar electronegative atoms are known as nonpolar covalent bonds. The electronegativity difference has to be 0.4 or less.
- The bonds that have electronegativity difference greater than 0.4 and lesser than 1.5 are known as polar covalent bonds.
- If the electronegativity difference is more than 2.0, then the bond is considered to be ionic.
- If the electronegativity difference is between 1.5 to 2.0, then the bond can be ionic or covalent depending upon the type of atoms that is bonded. If the bond is between a metal and nonmetal, then it is ionic and if it is between two nonmetals then it is polar covalent.
(c)
Interpretation:
The bond formed between nitrogen and sulfur has to be classified as nonpolar covalent, polar covalent or ionic.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
Bond polarity is the degree of inequality in the electron pair sharing between two atoms in a chemical bond. If the electrons are equally shared between two atoms then it is known as nonpolar covalent bond. If the electrons are unequally shared between two atoms means then it is known as polar covalent bond. The more electronegative atom pulls the shared pair of electrons towards itself resulting in fractional negative charge over it while the other atom gets a fractional positive charge. The fractional negative charge is depicted by using the symbol
The ionic and covalent bonds can be identified by using the electronegativity difference between the atoms that are bonded together.
- Bonds that are formed between two similar electronegative atoms are known as nonpolar covalent bonds. The electronegativity difference has to be 0.4 or less.
- The bonds that have electronegativity difference greater than 0.4 and lesser than 1.5 are known as polar covalent bonds.
- If the electronegativity difference is more than 2.0, then the bond is considered to be ionic.
- If the electronegativity difference is between 1.5 to 2.0, then the bond can be ionic or covalent depending upon the type of atoms that is bonded. If the bond is between a metal and nonmetal, then it is ionic and if it is between two nonmetals then it is polar covalent.
(d)
Interpretation:
The bond formed between nitrogen and chlorine has to be classified as nonpolar covalent, polar covalent or ionic.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
Bond polarity is the degree of inequality in the electron pair sharing between two atoms in a chemical bond. If the electrons are equally shared between two atoms then it is known as nonpolar covalent bond. If the electrons are unequally shared between two atoms means then it is known as polar covalent bond. The more electronegative atom pulls the shared pair of electrons towards itself resulting in fractional negative charge over it while the other atom gets a fractional positive charge. The fractional negative charge is depicted by using the symbol
The ionic and covalent bonds can be identified by using the electronegativity difference between the atoms that are bonded together.
- Bonds that are formed between two similar electronegative atoms are known as nonpolar covalent bonds. The electronegativity difference has to be 0.4 or less.
- The bonds that have electronegativity difference greater than 0.4 and lesser than 1.5 are known as polar covalent bonds.
- If the electronegativity difference is more than 2.0, then the bond is considered to be ionic.
- If the electronegativity difference is between 1.5 to 2.0, then the bond can be ionic or covalent depending upon the type of atoms that is bonded. If the bond is between a metal and nonmetal, then it is ionic and if it is between two nonmetals then it is polar covalent.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
General, Organic, and Biological Chemistry
- The Ksp for lead iodide ( Pbl₂) is 1.4 × 10-8. Calculate the solubility of lead iodide in each of the following. a. water Solubility = mol/L b. 0.17 M Pb(NO3)2 Solubility = c. 0.017 M NaI mol/L Solubility = mol/Larrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forward
- Only 100% sure experts solve it correct complete solutions need to get full marks it's my quiz okkkk.take your time but solve full accurate okkk chemistry expert solve itarrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardShow work. don't give Ai generated solutionarrow_forward
- Show work. Don't give Ai generated solutionarrow_forwardPart A Give the IUPAC name and a common name for the following ether: CH3-CH2-O-CH2-CH2-CH3 Spell out the full names of the compound in the indicated order separated by a comma. Submit My Answers Give Up Part B Give the IUPAC name and a common name for the following ether: Spell out the full names of the compound in the indicated order separated by a comma. Submit My Answers Give Uparrow_forwardFrenkel and Schottky are intrinsic or extrinsic defects, point or linear defects.arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning